
MAGAZIN FÜR DIE PROGRAMMIERUNG VON MICROSOFT ACCESS,
SQL SERVER UND CLOUD-AUTOMATIONEN MIT VBA UND CO.

vbentwickler.de

AUSGABE 05/2025

Access, SQL und
Cloud AUTOMATION

IN DIESEM HEFT:

SEITE 3

CODESNIPPETS IM
SQL SERVER
Erfahre, wie Du Codesnippets im
SQL Server anlegen und schnell
abrufen kannst.

DATENBANK ZUM
SQL SERVER MIGRIEREN
Migriere die Tabellen Deiner
Access-Datenbank mit dem SQL
Server Migration Assistant zum
SQL Server.

DATEIEN IM SQL SERVER
MIT FILETABLES
Nutze die Filetable-Funktionen des
SQL Servers, um Dateien in SQL
Server-Datenbanken zu speichern.

SEITE 10 SEITE 48

www.vbentwickler.de Seite 3

EDITORIAL

In Access, SQL und Cloud Automation werden wir uns
um alle Themen kümmern, die über das reine Program-
mieren von Access-Anwendungen hinausgehen. Dabei
behandeln wir die folgenden Schwerpunkte:

•	Access: Hier zeigen wir fortgeschrittene Techniken rund
um die Entwicklung von Access-Anwendungen. VBA-
Programmierung, Fehlerbehandlung, API-Programmie-
rung – alles, was über das reine Erstellen von Tabellen,
Abfragen, Formularen und Berichten hinausgeht.

•	SQL Server: Wir zeigen, wie man zum SQL Server mi-
griert, wie Access optimal mit SQL Server zusammen-
arbeitet und wie wir von Access aus performant auf
SQL Server-Datenbanken zugreifen können.

•	Cloud: Wer langfristig mit Access arbeiten möchte,
muss Kompatibilität zu den vielen verschiedenen
Cloud-Diensten und Saas-Lösungen herstellen und in
der Lage sein, diese von Access aus zu steuern und
Daten mit diesen auszutauschen. Genau darum küm-
mern wir uns, zum Beispiel durch Verwendung von VBA
und Rest APIs.

Und natürlich automatisieren wir alles rund um Microsoft
Access. Egal, ob mit reinem VBA innerhalb der Anwendung
oder durch COM-DLLs, mit denen wir Funktionalitäten in
Form von Bibliotheken bereitstellen oder durch COM-Add-
Ins, mit denen wir die Funktionen der Benutzeroberfläche
von Access oder dem VBA-Editor erweitern.

Alle aktuellen Artikel in unserer neuen
Lernplattform
Außerdem findest Du ab jetzt alle Artikel in unserer neuen,
modernen Lernplattform unter der folgenden Adresse:

https://minhorst.learningsuite.

io

Dafür musst Du Dich dort allerdings erst einmal regist-
rieren. Dein unschlagbarer Vorteil: Du brauchst Dich nur
einmal zu registrieren und Deine Zugangsdaten gelten von
da an für ein gesamtes Jahr.

Die Registrierung führst Du hier durch:

https://andreminhorst.de/anmeldung-an-learningsuite

Bitte gib dort neben Deinem Vornamen, Deinem Nachna-
men und Deiner E-Mail-Adresse den Benutzernamen und
das Kennwort an, dass Du auf Seite 2 dieses PDF-Doku-
ments findest. Danach bekommst Du eine Mail mit einem
Link, über den Du die Registrierung abschließen kannst.

Du findest in der Lernplattform übrigens auch ein Forum,
in dem Du Dich mit mir und anderen Lesern direkt aus-
tauschen kannst!

Achtung: vbentwickler.de bleibt erhalten!
Aus technischen Gründen findest Du die Artikel weiterhin
auf der Webseite https://www.vbentwickler.de.

Viel Spaß beim Erkunden der neuen Lernplattform!

Dein André Minhorst

Aus VB-Entwickler wird
Access, SQL und Cloud Automation
Um der Entwicklung in der Welt rund um VBA,VB, Access und den übrigen Office-

Anwendungen gerecht zu werden, haben wir den Titel dieses Magazins geändert

– und damit wird sich auch der Inhalt auf neue Schwerpunkte konzentrieren.

SQL Server und Co.
Code-Snippets im SQL Server Management Studio

www.vbentwickler.de/476Seite 4

Eingebaute Code-
Snippets nutzen
Als Erstes schauen wir
uns an, wie die eingebau-
ten Code-Snippets ge-
nutzt werden können.

Dazu öffnen wir ein be-
liebiges Abfragefenster,
am besten im Kontext
der Datenbank, in der wir
den Code-Schnipsel nut-
zen wollen.

Dazu markieren wir die Datenbank
und öffnen dann mit der Tastenkombi-
nation Strg + N ein neues Abfragefens-
ter. Hier können wir das Kontextmenü
öffnen und finden den Eintrag Schnip-
sel einfügen... vor. Alternativ können
wir die Tastenkombination Strg + K,
Strg + X nutzen (siehe Bild 1).

Dies öffnet das Widget aus Bild 2. Hier
sehen wir den Befehl Schnipsel einfügen und eine
Auflistung der verschiedenen Kategorien.

Wählen wir eine aus, zum Beispiel Stored Procedure,
sehen wir alle in dieser Kategorie verfügbaren Schnip-

Code-Snippets im SQL Server Management Studio
Es gibt Code-Snippets, die man immer wieder verwendet – sei es, um Tabellen, Views oder ge-
speicherte Prozeduren zu erstellen, Tabellen oder Indizes zu definieren und vieles mehr. Vielleicht
nutzt Du auch verschiedene System-Befehle, um verschiedene Aktionen im Abfragefenster auszu-
lösen, um beispielsweise Informationen zur Datenbank zu ermitteln. Solche Snippets hast Du viel-
leicht in einer Textdatei gespeichert, um sie jederzeit in das Abfragefenster kopieren zu können. Es
gibt jedoch eine viel mächtigere Möglichkeit, solche Code-Snippets zu nutzen: Das Abfragefenster
bietet nämlich die Möglichkeit, Code-Snippets per Kontextmenü einzufügen. Das Beste daran ist:
Wir können sogar eigene Code-Snippets definieren, die darüber ausgewählt und eingefügt werden
können. In diesem Artikel schauen wir uns an, wie wir diese Funktion nutzen können und wie wir
sogar eigene Code-Snippets in diesem Menü verfügbar machen können.

Bild 1:  Schnipsel einfügen per Kontextmenü im Abfragefenster

Bild 2:  Auswahl der Kategorien für die Code-Schnipsel

www.vbentwickler.de/476 Seite 5

SQL Server und Co.
Code-Snippets im SQL Server Management Studio

sel (siehe Bild 3). Außerdem zeigt dieser Bereich für
den aktuell markierten Eintrag noch einen Hilfetext
an.

Wir wählen den Eintrag Standardvorlage für eine
Prozedur erstellen aus und sehen das Ergebnis aus
Bild 4. Hier sind verschiedene Texte mit einem gel-
ben Hintergrund markiert. Diese können wir nun mit
der Tabulator-Taste durchlaufen. Der aktuelle Eintrag
wird markiert, sodass wir diesen direkt durch den ge-
wünschten Text ersetzen können. Wir würden also
nun die einzelnen Texte durch die von uns gewünsch-
ten Texte einfach überschreiben und erhalten so die
gewünschte gespeicherte Prozedur.

Eigene Schnipsel nutzen
Es wird noch besser: Wir können nämlich eigene
Schnipsel definieren, die dann ebenfalls im Schnipsel-
Menü angezeigt werden.

Erst einmal grundlegende Informationen:

•	 Es gibt zwei Bereiche, in denen die Schnipsel gespei-
chert werden. Der erste ist der Bereich mit den ein-
gebauten Schnipseln. Der zweite ist der Bereich für
die benutzerdefinierten Schnipsel.

•	 Wir können in beiden Bereichen eigene Schnipsel
hinzufügen. Allerdings raten wir davon ab, Schnip-
sel zu den eingebauten Schnipseln hinzuzufügen,
denn diese werden bei Updates von SQL Server Ma-
nagement Studio gegebenenfalls überschrieben.

•	 Allerdings können wir die eingebauten Schnipsel als
Beispielmaterial für eigene Schnipsel verwenden.

•	 Wenn wir einen eigenen Schnipsel in dem dafür
vorgesehenen Bereich angelegt haben, wird dieser
erst beim nächsten Öffnen des SQL Server Manage-
ment Studios angezeigt.

Speicherort für benutzerdefinierte
Schnipsel
Die benutzerdefinierten Schnipsel speichern wir in
dem folgenden Ordner ab, hier zum Beispiel für die
Version 21 von SQL Server Management Studio:

C:\Users\User\Documents\SQL Server Management Studio 21\

Code Snippets\SQL\My Code Snippets

Hier können wir direkt eigene Schnipsel speichern,
aber wir können auch Unterordner erstellen, die dann
entsprechend im Schnipsel-Widget angezeigt werden.

Einen ersten eigenen Schnipsel erstellen
Damit kommen wir zum spannenden Teil: Wir legen
unseren ersten eigenen Schnipsel an.

Bild 3:  Auswahl der Schnipsel einer Kategorie

Bild 4:  Ein frisch hinzugefügter Schnipsel

SQL Server und Co.
Code-Snippets im SQL Server Management Studio

www.vbentwickler.de/476Seite 6

Das können wir mit einem komplett neuen Schnipsel
machen oder wir nutzen einen der Schnipsel als Vor-
lage.

Komplett neuen Schnipsel anlegen
Für einen komplett neuen Schnipsel erstellen wir eine
neue Textdatei und fügen dieser den gewünschten Text
hinzu. Das kann eine einfache Anweisung sein, die Du
immer wieder benötigst und die Du nicht immer im
Internet suchen und einfügen möchtest.

Das folgende Skript zeigt beispielsweise die zuletzt an-
gelegten Backups an:

SELECT

 database_name,

 backup_start_date,

 backup_finish_date,

 backup_size / 1024 / 1024 AS BackupMB,

 physical_device_name

FROM msdb.dbo.backupset b

JOIN msdb.dbo.backupmediafamily m

 ON b.media_set_id = m.media_set_id

WHERE type = 'D'

ORDER BY backup_finish_date DESC;

Dieses Skript fügen wir nun in die Grundstruktur ein
und speichern sie im oben angegebenen Ordner unter
dem Namen LetzteBackups.snippet. Die Grundstruk-
tur sieht wie folgt aus:

<CodeSnippets>

 <CodeSnippet Format="1.0.0">

 <Header>

 <Title>Letzte Backups anzeigen</Title>

 <Shortcut>lastbackups</Shortcut>

 <Description>Zeigt die zuletzt angefertigten Backups

an.</Description>

 <Author>André Minhorst</Author>

 </Header>

 <Snippet>

 <Code Language="SQL">

 <![CDATA[

SELECT

 database_name,

 backup_start_date,

 backup_finish_date,

 backup_size / 1024 / 1024 AS BackupMB,

 physical_device_name

FROM msdb.dbo.backupset b

JOIN msdb.dbo.backupmediafamily m

 ON b.media_set_id = m.media_set_id

WHERE type = 'D'

ORDER BY backup_finish_date DESC;

]]>

 </Code>

 </Snippet>

 </CodeSnippet>

</CodeSnippets>

Hier sehen wir einige Einstellungen wie den Titel,
einen Shortcut, eine Beschreibung und den Autor des
Schnipsels. Zwischen den Elementen <![CDATA[und
]]> platzieren wir unseren T-SQL-Code.

Öffnen wir nun das SQL Server Management Studio
erneut und wählen die Auswahl der Schnipsel aus, fin-
den wir bereits unseren selbst angelegten Schnipsel vor

(siehe Bild 5).

Wählen wir diesen aus,
erscheint der von uns hin-
terlegte Code im Abfrage-
fenster und kann direkt

Bild 5:  Unser neuer Schnipsel wird bereits zur Auswahl angeboten.

www.vbentwickler.de/484 Seite 11

SQL Server und Co.
Access-Datenbank zum SQL Server migrieren

SQL Server
Migration Assistant
herunterladen und
installieren

Die jeweils aktuelle Ver-
sion des SQL Server Mi-
gration Assistant finden
wir, wenn wir im Inter-
net nach genau diesen
Schlüsselwörtern su-
chen.

Wir landen dann bei-
spielsweise auf einer
Seite wie der aus Bild 1.
Hier klicken wir nicht
etwa auf SQL Server
Migration Assistant for
Access, sondern scrollen
weiter nach unten, wo
wir unter Downloads
den Eintrag SSMA for
Access finden.

Access-Datenbank zum SQL Server migrieren
Für die Migration der Tabellen einer Access-Datenbanken in eine SQL Server-Datenbank erledigt
man am einfachsten mit einem von Microsoft bereitgestellten Tool namens SQL Server Migration
Assistant. Diesem übergeben wir den Namen der zu migrierenden Datenbank, wählen die Tabellen
und Abfragen aus, die zum SQL Server übertragen werden sollen und starten dann die Migration.
Dies überträgt legt eine neue Datenbank im SQL Server an und überträgt die gewählten Tabellen
und Abfragen von Access zum SQL Server. Mit dem SQL Server Migration Assistant können wir
außerdem direkt Tabellenverknüpfungen zu den neu erstellten Tabellen in der Access-Datenbank
anlegen, sodass wir grundsätzlich direkt mit der Access-Anwendung weiterarbeiten können – mit
dem Unterschied, dass die Daten nun nicht mehr aus den Access-Tabellen kommen, sondern vom
SQL Server. In diesem Artikel zeigen wir die grundlegende Verwendung des SQL Server Migration
Assistants, wobei wir erst einmal eine Datenbank verwenden, deren Tabellen und Felder sich ohne
größere Probleme zum SQL Server übertragen lassen.

Bild 1:  Download des SQL Server Migration Assistant

SQL Server und Co.
Access-Datenbank zum SQL Server migrieren

www.vbentwickler.de/484Seite 12

Auf der nun erscheinen-
den Seite klicken wir auf
Download. Die Sprache
können wir nicht ändern,
da der SSMA nur in Eng-
lisch verfügbar ist.

Richtige Bitness
auswählen
Es erscheint ein Popup,
das die verschiedenen
Versionen auflistet (siehe
Bild 2). Hier gibt es zum
Beispiel zwei verfügbare
Versionen (9.5 und 10.4),
die jeweils für 32-Bit und
64-Bit verfügbar sind.

Hier sollten wir die aktuellere Version wählen. Viel
wichtiger ist jedoch, die richtige Bitness zu selektieren.

Ob wir die 32-Bit-Version (erkennbar am Zusatz x86)
oder die 64-Bit-Version wählen (ohne Zusatz), hängt
nicht etwa von der Bitness des installierten Betriebs-

systems zusammen, son-
dern von der Bitness der
Access-Installation.

Zur Sicherheit prüfen wir
also, ob unsere Access-
Version in der 32-Bit-
oder in der 64-Bit-Ver-
sion installiert ist. Das
können wir beispielsweise
über die Benutzerober-
fläche von Access heraus-
finden. Dazu klicken wir
in neueren Access-Ver-
sionen im Ribbon auf den
Reiter Datei und im nun
erscheinenden Bereich
links auf Konto.

Rechts sehen wir nun eine
Schaltfläche namens Info

Bild 2:  Auswahl der richtigen Version

Bild 3:  Ermitteln der Bitness der Access-Installation

www.vbentwickler.de/484 Seite 13

SQL Server und Co.
Access-Datenbank zum SQL Server migrieren

zu Access. Damit öffnen wir den Dialog aus Bild 3.
Oben sehen wir nun entweder den Text 32 Bit oder 64
Bit. In diesem Fall haben wir es mit einem 32-Bit-Ac-
cess zu tun, also installieren wir den SQL Server Mig-
ration Assistant mit dem Zusatz x86.

Migration vorbereiten
Für die erste Migration könnte man eine ganze Reihe
von Bedingungen direkt in den Tabellen der Access-
Datenbank prüfen – ob die Beziehungen korrekt gesetzt
sind, nur gültige Namen für Tabellen, Felder, Indizes
und so weiter gesetzt sind und ob nur Datentypen ver-
wendet werden, die der SQL Server auch unterstützt.

Wir können aber auch einfach eine Migration starten
und abwarten, welche Fehler, Warnungen und Hin-
weise uns der SQL Server Migration Assistant liefert.
Diese können wir dann in Access korrigieren und eine
erneute Migration starten.

Wenn wir bei der Migration gleich Tabellenverknüp-
fungen zur Access-Datenbank hinzufügen wollen,
sparen wir uns eine Menge nachträglicher Arbeit. Dies
erledigt folgende Aufgaben:

•	 Die vorhandenen lokalen Tabellen werden nach ei-
nem bestimmten Schema umbenannt.

•	 Es werden Tabellenverknüpfungen zu den migrier-
ten Tabellen angelegt.

In der Regel werden wir nach der initialen Migra-
tion allerdings Fehler, Warnungen und Hinweise auf
Probleme erhalten, die wir gegebenenfalls erst in der
originalen Access-Datenbank anpassen wollen, um
anschließend in einer weiteren Migration die Tabellen
mit weniger oder möglichst sogar ohne Fehlermeldun-
gen zum SQL Server zu übertragen.

Dazu ein kleiner Vorgriff: Wir könnten dann auf die
Idee kommen, die vom SQL Server Migration Assistant

zur Access-Datenbank hinzugefügten Tabellenver-
knüpfungen einfach zu löschen und den umbenannten
lokalen Tabellen einfach wieder den Originalnamen
zuzuweisen.

Wenn wir diese Datenbank dann erneut mit dem SQL
Server Migration Assistant migrieren wollen, wird die-
ser aber überraschenderweise keine Tabellen in der
Access-Datenbank mehr finden, die sich migrieren
lassen.

Der Grund dafür ist, dass der SSMA die Originalta-
bellen nicht nur umbenennt, sondern auch verschie-
dene Eigenschaften einstellt, mit denen der SSMA bei
erneuter Migration erkennen kann, welche Tabellen
bereits migriert wurden.

Wir könnten nun zwar per VBA-Code nicht nur die
bereits migrierten Tabellen wieder mit den Original-
namen versehen, sondern auch die vom SSMA hinzu-
gefügten Eigenschaften löschen, damit diese erneut
migriert werden können.

Es ist aber wesentlich einfacher, vor der Migration eine
Kopie der zu migrierenden Datenbank zu erstellen.
Wenn wir dann nach der ersten Migration feststellen,
dass wir noch Änderungen an den Tabellen der Ac-
cess-Datenbank vornehmen wollen, damit diese im
zweiten Durchlauf ohne Fehler, Warnungen und Hin-
weise migriert werden kann, können wir einfach die
bereits migrierte Version verwerfen und mit der Kopie
erneut starten.

Migrieren der Access-Datenbank
Damit starten wir die erste Migration. Die Beispiel-
datenbank haben wir so gestaltet, dass zumindest kei-
ne Fehler bei der Migration gemeldet werden. Welche
Fehler, Warnungen und Hinweise bei der Migration
auftreten können und wie wir diese beheben, werden
wir uns aus Platzgründen ohnehin nicht in diesem Ar-
tikel ansehen.

SQL Server und Co.
Access-Datenbank zum SQL Server migrieren

www.vbentwickler.de/484Seite 14

Wenn wir den SQL Ser-
ver Migration Assistant
gestartet haben, zeigt die-
ser standardmäßig gleich
den Migration Wizard
an (siehe Bild 4), der uns
die verschiedenen Schrit-
te der Migration vorstellt.
Hier können wir außer-
dem festlegen, ob der Wi-
zard beim nächsten Start
des SQL Server Migration
Assistants erneut aufge-
rufen werden soll. Diese
Einstellung behalten wir
zunächst bei. Wir können
sie aber auch deaktivie-
ren und den Wizard bei
späteren Starts des SSMA
über den Menüpunkt Fi-
le|Migration Wizard ma-
nuell aufrufen.

Im zweiten Schritt defi-
nieren wir die Daten des
Migrationsprojekts. Hier
geben wir einen Namen
an und können den Pfad
der zu speichernden Pro-
jektdatei festlegen (siehe
Bild 5).

Außerdem legen wir hier
fest, zu welcher SQL Ser-
ver-Version wir die Ac-
cess-Datenbank migrie-
ren wollen – hier SQL Server 2022.

SQL Server-Version ermitteln
Wenn Du nicht sicher bist, welche SQL Server-Ver-
sion Du verwendest, kannst Du das im SQL Server

Management Studio herausfinden. Dazu klickst Du
im Objekt-Explorer mit der rechten Maustaste auf
das oberste Element für die aktuelle Verbindung und
wählst im Kontextmenü den Eintrag Neue Abfrage
aus.

Bild 4:  Start des SQL Server Migration Assistants

Bild 5:  Angabe eines Projektnamens

www.vbentwickler.de/484 Seite 15

SQL Server und Co.
Access-Datenbank zum SQL Server migrieren

Hier gibst Du den folgenden Befehl ein und
führst diesen mit der Taste F5 aus:

SELECT @@Version

Dies liefert das Ergebnis aus Bild 6 – in die-
sem Fall wird also der SQL Server in der Ver-
sion 2022 verwendet, die wir auch im SSMA
auswählen sollten.

Im SSMA klicken wir nun auf Next und landen im
nächsten Schritt, in dem wir über die Schaltfläche Add
Databases die Access-Datenbank auswählen, deren
Tabellen wir zum SQL Server migrieren wollen. Diese
erscheint anschließend in der Liste der hinzuzufügen-
den Access-Datenbanken.

Hier ist zu erkennen, dass wir durchaus auch die Tabel-
len mehrerer Access-Datenbanken gleichzeitig in eine
SQL Server-Datenbank migrieren können. Das ist zum
Beispiel sinnvoll, wenn wir ein Frontend nutzen, das
mit den Tabellen aus mehreren Access-Backends ver-
knüpft ist, die alle in einer neuen SQL Server-Daten-
bank landen sollen. In diesem Fall wollen wir jedoch
nur eine Access-Datenbank migrieren.

Lokale und verknüpfte Access-Tabellen
An dieser Stelle kommt oft die Frage auf, wie man mit
dem Fall umgeht, dass eine Frontend-Datenbank ver-
wendet wird, die ihre Daten über Tabellenverknüpfun-
gen zu einer weiteren, als Backend verwendeten Ac-
cess-Datenbank bezieht.

Hier hat man zwei Möglichkeiten:

•	 Man gibt die Frontend-Datenbank als Quelle für die
Migration an, wodurch man sowohl lokale Tabellen
als auch verknüpfte Tabellen migrieren kann.

•	 Oder man gibt die Backend-Datenbank als Quelle
für die Migration an, wodurch nur die Tabellen aus

der Backend-Datenbank zur Migration herangezo-
gen werden können.

Welche Variante man wählt, hängt in erster Linie da-
von ab, ob der SSMA bei der Migration der Access-Da-
tenbank direkt Tabellenverknüpfungen zu den neuen
Tabellen aus der SQL Server-Datenbank anlegen soll.

Wenn wir die Variante wählen, bei der wir das Ba-
ckend als Quelle für die Tabellen angeben, werden die
Tabellenverknüpfungen auch automatisch in der Back-
enddatenbank angelegt. Das ist weniger sinnvoll, da
wir diese ja im Frontend benötigen.

Wir würden also an dieser Stelle normalerweise die
Frontenddatenbank mit dem Tabellenverknüpfungen
zur Backenddatenbank auswählen.

Der SQL Server Migration Assistant erkennt dies auto-
matisch und migriert dann die verknüpften Tabellen
aus dem Backend. Wenn wir die Option zum automa-
tischen Erstellen von Tabellenverknüpfungen zu den
Tabellen in der zu erstellenden SQL Server-Datenbank
wählen, benennt der SSMA die Tabellenverknüpfun-
gen zu den Tabellen des Access-Backends um und er-
setze diese durch die Verknüpfungen zu den Tabellen
der SQL Server-Datenbank.

Tabellen für die Migration auswählen
Im SQL Server Migration Assistant gehen wir nun zum
nächsten Schritt, in dem wir die zu migrierenden Ob-
jekte der Access-Datenbank auswählen können (siehe

Bild 6:  Ermitteln der SQL Server-Version

www.vbentwickler.de/485 Seite 23

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

Beispieldatenbank
Im Artikel Access-Datenbank zum SQL Server mig-
rieren (www.vbentwickler.de/484) zeigen wir, wie Du
eine Access-Datenbank zum SQL Server migrierst. Die
dort erstellt SQL Server-Datenbank nutzen wir als Bei-
spielmaterial für die folgenden Abschnitte. Wir gehen
zum Start davon aus, dass wie eine leere Access-Daten-
bank haben, in der wir Tabellenverknüpfungen auf Ba-
sis dieser SQL Server-Datenbank erstellen wollen.

Warum Tabellen per VBA verknüpfen?
Bevor wir uns ans Werk machen, stellt sich die Frage:
Warum sollte ich überhaupt meine Access-Datenbank
überhaupt per VBA mit Tabellen aus dem SQL Server
verknüpfen?

Wenn man eine Migration mit dem SQL Server
Management Studio durchführe, werden ja bereits
automatisch Tabellenverknüpfung hinzugefügt, und
außerdem gibt es doch in Access ausreichend Mög-
lichkeiten, Tabellen über die Benutzeroberfläche zu
verknüpfen. Dazu gehört beispielsweise der Assistent,
den wir über den Ribbon-Eintrag Externe Daten|Aus
Datenbank|Aus SQL Server öffnen (siehe Bild 1).

Alternativ können wir auch den Befehl Externe Da-
ten|Neue Datenquelle|Aus anderen Quellen|ODBC-
Datenbank nutzen (siehe Bild 2).

SQL Server: Tabellen per VBA verknüpfen
Wenn Du die Tabellen einer Access-Datenbank mit dem SQL Server Migration Assistant zum SQL
Server migriert hast, ist der Großteil einer SQL Server-Migration bereits geschafft. Allerdings ste-
hen noch weitere Arbeiten wie das Anpassen des VBA-Codes, Abfragen, Formularen und Berichten
bevor. Eine andere, wichtige Aufgabe ist das Sicherstellen der Funktion der Tabellenverknüpfun-
gen. Diese wurden, wenn die richtige Option im SQL Server Migration Assistant markiert wurde,
bereits initial angelegt, während die Original-Tabellen der Access-Datenbank umbenannt wurden.
Wie aber stellen wir sicher, dass die Tabellenverknüpfungen auch nach dem Ändern des Tabellen-
entwurfs im SQL Server aktuell bleiben? Das erläutern wir in diesem Artikel.

Bild 1:  Öffnen des Assistenten zum Verknüpfen oder Importieren
von SQL Server-Tabellen

Bild 2:  Öffnen des Assistenten für ODBC-Datenbanken

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

www.vbentwickler.de/485Seite 24

Beide führen dazu, dass wir eine Datenquelle
erstellen, die auf einem Treiber besteht – der
in beiden Fällen optimalerweise der aktuelle
ODBC-Treiber für die Verbindung mit Mic-
rosoft SQL Server ist.

In beiden Fällen können wir Tabellenver-
knüpfungen erstellen, die funktionieren
und die je nach den Einstellungen, die wir
dort vornehmen, zum Beispiel wie folgt
aussehen:

Description=AccessSQLServer;DRIVER=ODBC Driver

18 for SQL Server;SERVER=amvDesktop2023;Trusted_Connec-

tion=Yes;APP=Microsoft Office;DATABASE=SQLServerTabellen-

verknuepfen;TrustServerCertificate=Yes;

Tabellenverknüpfungen verwalten
Wenn die Tabellen einmal verknüpft sind, können wir
diese sogar über die Benutzeroberfläche verwalten.

Bild 3:  Öffnen des Tabellenverknüpfungs-Managers

Bild 4:  Der Tabellenverknüpfungs-Managers

www.vbentwickler.de/485 Seite 25

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

Dazu bietet sich zunächst der Tabellenverknüpfungs-
Manager an, den wir über den Ribbon-Eintrag aus
Bild 3 öffnen.

Der Tabellenverknüpfungs-Manager erscheint an-
schließend wie in Bild 4.

Hier sehen wir für jede Datenquelle einen Hauptein-
trag, den wir öffnen können. Danach erscheinen alle
Tabellen, die aus dieser Datenquelle stammen.

Wir können alle Tabellen markieren, indem wir einen
Haken für den Haupteintrag setzen, oder auch einzel-
ne Einträge markieren.

Dies aktiviert die beiden Schaltflächen Aktualisie-
ren und Verknüpfung erneuern. Wenn wir auf Ak-
tualisieren klicken, wird die Verknüpfung
aktualisiert, wobei alle Änderungen, die wir
zwischenzeitlich an der markierten Tabelle
im SQL Server vorgenommen haben, an die
Tabellenverknüpfung übertragen werden.

Wenn wir also beispielsweise ein neues Feld
zur Tabelle tblAbteilungen hinzufügen und
diesen Befehl betätigen, sehen wir beim
nächsten Öffnen der Tabellenverknüpfung in
Access das neue Feld.

Ähnlich funktioniert die Schaltfläche Ver-
knüpfung erneuern. Wenn wir nur eine Ta-
belle neu verknüpfen wollen, erscheint der
Dialog aus Bild 5, mit dem wir die bereits ver-
knüpfte Tabelle übernehmen oder einen neu-
en Namen eingeben können.

Wenn wir jedoch die gesamte Datenquelle
markieren, erscheint der Dialog aus Bild 6.
Damit können wir also auch die Verbindungs-
zeichenfolge bearbeiten. Danach wird der
Dialog zum Verknüpfen einer Tabelle für alle

Bild 5:  Neuverknüpfung einer Tabelle

Bild 6:  Neuverknüpfung einer Datenquelle

Bild 7:  Aktualisieren einer Datenquelle

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

www.vbentwickler.de/485Seite 26

Tabellenverknüpfungen dieser Datenquelle jeweils
einmal angezeigt.

Verknüpfungen über den
Navigationsbereich aktualisieren
Die Funktion zum Aktualisieren einer Tabellenver-
knüpfung können wir auch schneller aufrufen. Dazu
klicken wir mit der rechten Maustaste auf die Tabellen-
verknüpfung im Navigationsbereich und wählen dort
den Befehl Link aktualisieren aus (siehe Bild 7).

Direkt darüber sehen wir noch eine weitere Möglich-
keit, den Tabellenverknüpfungs-Manager zu öffnen.

Außerdem können wir eine Tabellenverknüpfung über
das Kontextmenü in eine lokale Tabelle konvertieren.

Das ist hilfreich, wenn man zum Beispiel eine Daten-
bank an einen anderen Entwickler übergeben möchte,
wenn dieser Arbeiten an der Datenbank durchführen
soll, man aber nicht die SQL Server-Datenbank mit-
liefern möchte.

Wenn es solche Möglichkeiten gibt, warum sollten wir
dann also das Aktualisieren oder Erneuern der Tabel-
lenverknüpfungen per VBA programmieren?

Dazu gibt es verschiedene Gründe:

•	 Zum Aktualisieren oder Neuverknüpfen sind im-
mer mehrere Klicks erforderlich. Das kostet Zeit
und ist fehleranfällig, weil man schnell eine falsche
Verbindungszeichenfolge oder einen falschen Ta-
bellennamen eingegeben hat.

•	 In der Regel entwickeln wir auf dem eigenen Rech-
ner. Gegebenenfalls wechseln wir dabei die SQL
Server-Datenbank oder den SQL Server. Wenn wir
das im Entwicklungsmodus noch über die Benut-
zeroberfläche machen, erhöht dies lediglich den
oben beschriebenen Aufwand.

•	 Spätestens wenn wir die Anwendung in den Pro-
duktivbetrieb übernehmen, müssen wir sicherstel-
len, dass die Tabellenverknüpfungen mit der dort
zu verwendenden Verbindungszeichenfolge erstellt
werden. Auch das könnten wir noch vorbereitend
durchführen, aber dann müssten wir immer bereits
auf unserem lokalen Entwicklungsrechner die Ta-
bellenverknüpfungen mit genau der Verbindungs-
zeichenfolge ausstatten, die wir auch auf dem Ziel-
system vorfinden.

•	 Ein weiterer Grund ist, dass wir beim Neuverknüpfen
von Tabellen über die Benutzeroberfläche für die Ta-
bellenverknüpfungen zum Beispiel der Tabelle dbo.
tblAbteilungen einen Namen wie dbo_tblAbteilun-
gen erhalten. Das heißt, dass wir diesen noch nach-
träglich anpassen müssen, wenn wir beispielsweise
nur den Namen der Tabelle, also tblAbteilungen,
ohne das vorangestellte Schema erhalten wollen.

Deshalb ist es sinnvoll, einige VBA-Routinen vorzu-
bereiten, mit denen wir die Tabellenverknüpfungen
jederzeit per Mausklick entweder aktualisieren oder
erneuern können.

Wenn wir dann zum Beispiel auf dem Entwicklungs-
system den Server wechseln, brauchen wir einfach nur
eine andere Verbindungszeichenkette zu irgendwo in
der Datenbank zu speichern, die dann auf dem Ziel-
rechner zum Herstellen der Tabellenverknüpfungen
verwendet wird.

Tabellenverknüpfungen aktualisieren
bei Windows-Authentifizierung vs. SQL
Server-Authentifizierung

Wenn wir die Tabellenverknüpfungen über die Be-
nutzeroberfläche aktualisieren wollen, gibt es einen
Unterschied bezüglich der beiden Authentifizierungs-
methoden Windows-Authentifizierung und SQL Ser-
ver-Authentifizierung.

www.vbentwickler.de/485 Seite 27

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

Bei der Windows-Authentifizierung wird be-
kanntlich das Windows-Konto des aktuellen
Benutzers im SQL Server überprüft.

Ist dieses bekannt und die entsprechende An-
meldung im SQL Server hat Berechtigungen
für den Zugriff auf die entsprechenden Tabel-
len, erfolgt die Aktualisierung ohne weitere
Interventionen des SQL Servers.

Wenn wir jedoch die SQL Server-Authentifizierung
verwendet wird, prüft der SQL Server, ob Benutzerna-
me und Kennwort der jeweiligen SQL Server-Anmel-
dungen vorliegen.

Das ist der Fall, wenn man in der laufenden Access-
Session bereits einmal die Anmeldedaten für das
Aktualisieren oder erneute Anlegen der Tabellenver-
knüpfungen verwendet hat. Diese werden dann intern
gespeichert.

Sobald die Session jedoch geschlossen ist, also die lau-
fende Access-Anwendung mit den zwischengespei-
cherten Anmeldedaten beendet wurde, liegen die An-
meldedaten nicht mehr im Speicher.

Öffnet man die Access-Anwendung mit den verknüpf-
ten Tabellen erneut und versucht, eine der Tabellen zu
öffnen, erscheint die Meldung aus Bild 8.

Wenn wir die Daten einmal eingegeben haben, können
wir alle Tabellen, die über die gleiche Verbindungszei-
chenfolge verknüpft sind, wieder öffnen.

Nachfolgend beschreiben wir, wie man die Ver-
knüpfung zu einer einzelnen Tabelle per VBA ak-
tualisiert und wie man alle Tabellenverknüpfungen
erneuert.

Bei Verwendung der SQL Server-Authentifizierung er-
scheint daher auch hier die Meldung zur Eingabe der

Verbindungsdaten. Eine automatische Aktualisierung
der Tabellenverknüpfungen ist also nur möglich, wenn
wir die Windows-Authentifizierung für den Zugriff
auf die Tabellen des SQL Servers verwenden.

Wenn wir die SQL Server-Authentifizierung nutzen,
können wir die Tabellen nicht einfach mit den nach-
folgend beschriebenen VBA-Prozeduren aktualisieren,
sondern müssen zumindest eine Tabellenverknüpfung
löschen und erneut anlegen. Dadurch sind anschlie-
ßend aber auch alle anderen Tabellen mit der gleichen
Verbindung wieder zugreifbar.

Hinweis: Früher war es möglich, den Benutzernamen
und das Kennwort in der Verbindungszeichenfolge für
eine Tabelle dauerhaft zu speichern, aber diese Funk-
tion hat Microsoft aus Sicherheitsgründen entfernt.
Das ist sinnvoll, denn sonst könnten die Zugangsdaten
über die Benutzeroberfläche ausgelesen werden, was
potenzielle Sicherheitslücken mit sich bringt.

Tabellenverknüpfung aktualisieren per
VBA
Als Erstes schauen wir uns an, wie wir die Tabellenver-
knüpfungen per VBA aktualisieren können – also so,
als ob wir den Befehl Link aktualisieren im Kontext-
menü einer Tabelle im Navigationsbereich aufrufen.

Wir gehen hier davon aus, dass uns eine frisch mit dem
SQL Server Migration Assistant migrierte Datenbank-
anwendung vorliegt.

Bild 8:  Abfrage der Verbindungsdaten von per SQL Server-Authentifizierung
verknüpften Tabellen

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

www.vbentwickler.de/485Seite 28

Um beispielsweise die Tabellenverknüpfung zur Tabel-
le tblAbteilungen zu aktualisieren, verwenden wir die
Methode RefreshLink des jeweiligen TableDef-Ob-
jekts.

Das Aufwendigste daran ist das Referenzieren die-
ses Objekts. Dazu verwenden wir die folgende Pro-
zedur:

Public Sub TabellenverknuepfungAktualisieren()

 Dim db As DAO.Database

 Dim tdf As DAO.TableDef

 Set db = CurrentDb

 Set tdf = db.TableDefs("tblAbteilungen")

 tdf.RefreshLink

 Application.RefreshDatabaseWindow

End Sub

Diese füllt die Variable db mit einem Verweis auf das
aktuelle Database-Objekt. Dann referenzieren wir das
TableDef-Objekt der Tabelle tblAbteilungen und ru-
fen seine Methode RefreshLink auf. Schließlich aktu-
alisieren wir noch den Navigationsbereich, damit die
Änderung direkt sichtbar wird.

Sollten wir in der Zwischenzeit den Entwurf der SQL
Server-Tabelle tblAbteilungen angepasst haben, wer-
den diese Änderungen nun beim Öffnen der Tabelle in
Access direkt sichtbar.

Alle Tabellenverknüpfungen aktualisieren
Eine einzige Tabellenverknüpfung wollen wir meist
nur während der Entwicklung aktualisieren, was sich
schneller durch das Betätigen des Befehls Link aktua-
lisieren des Kontextmenüs des jeweiligen Eintrags im
Navigationsbereich von Access realisieren.

Wir wollen vermutlich eher direkt alle Tabellen aktua-
lisieren, zum Beispiel direkt dann, wenn der Benutzer
die Anwendung öffnet. Dann können wir die folgende
Prozedur aufrufen:

Public Sub AlleTabellenverknuepfungenAktualisieren()

 Dim db As DAO.Database

 Dim tdf As DAO.TableDef

 Set db = CurrentDb

 For Each tdf In db.TableDefs

 If Not Len(tdf.Connect) = 0 Then

 If Left(tdf.Connect, 5) = "ODBC;" Then

 Debug.Print tdf.Connect

 tdf.RefreshLink

 End If

 End If

 Next tdf

 Application.RefreshDatabaseWindow

End Sub

Die Prozedur durchläuft alle Elemente der TableDefs-
Auflistung und prüft in zwei If...Then-Bedingung,
ob die Tabelle erstens einen Wert für die Eigenschaft
Connect enthält und zweitens, ob dieser mit ODBC;
beginnt.

Für Tabellen, die per ODBC verknüpft sind, liefert die
Eigenschaft Connect beispielsweise Werte wie den fol-
genden:

ODBC;Description=AccessSQLServer;DRIVER=ODBC Driver 18

for SQL Server;SERVER=amvDesktop2023;Trusted_Connecti-

on=Yes;APP=Microsoft Office;DATABASE=SQLServerTabellenver-

knuepfen;TrustServerCertificate=Yes;

Tabellenverknüpfung mit neuer
Verbindungszeichenfolge aktualisieren
Wenn wir die Frontend-Datenbank vom Entwick-
lungsrechner zum Rechner des Benutzers übertra-
gen, bei dem einer der folgenden Faktoren zutrifft,
reicht das reine Aktualisieren mit RefreshLink nicht
aus:

•	 der Servername lautet anders,

•	 der SQL Server-Datenbankname lautet anders,

www.vbentwickler.de/485 Seite 29

SQL Server und Co.
SQL Server: Tabellen per VBA verknüpfen

•	 es wird nicht die gleiche Authentifizierungsart ver-
wendet, also Windows-Authentifizierung statt SQL
Server-Authentifizierung oder umgekehrt oder

•	 es wird SQL Server-Authentifizierung verwendet,
aber mit anderen Benutzerdaten.

In diesem Fall müssen wir vor dem Aufruf der Metho-
de RefreshLink noch die neue Verbindungszeichen-
folge mit den geänderten Parametern für die Eigen-
schaft Connect festlegen.

Die Prozedur TabellenverknuepfungAktualisieren
müssen wir dann wie in Listing 1 um die Definition
der zu verwendenden Verbindungszeichenfolge erwei-
tern und diese der Eigenschaft Connect zuweisen.

Wann Tabellenverknüpfungen
aktualisieren und wann löschen und
erneuern?

Damit stellt sich nun die Frage, in welchem Szenario
wir mit dem Aktualisieren der Tabellenverknüpfungen
auskommen und wann wie die Tabellenverknüpfun-
gen löschen und und neu erstellen müssen.

Da wir sogar eine neue Verbindungszeichenfolge beim
Aktualisieren der Tabellenverknüpfungen über die

Connect-Eigenschaft des TableDef-Objekts überge-
ben können, sollte dies für sehr viele Fälle bereits aus-
reichen.

Es gibt jedoch auch Fälle, wo tatsächlich ein Löschen
und Neuerstellen der Tabellenverknüpfungen erfor-
derlich ist:

•	 wenn sich Tabellennamen geändert haben

•	 wenn neue Tabellen hinzugekommen sind

•	 wenn Tabellen gelöscht wurden und verwaiste Ta-
bellenverknüpfungen zurücklassen würden

Für diese Fälle haben wir einen Satz von Prozeduren
und Funktionen programmiert, die wir in den folgen-
den Abschnitten beschreiben.

Besser aktualisieren als löschen und neu
erstellen
In Fällen, wo das Löschen und erneute Erstellen der
Tabellenverknüpfungen nicht erforderlich ist, sollte
man es immer mit dem Aktualisieren der Tabellenver-
knüpfungen versuchen.

Damit erhalten wir zumindest die folgenden beiden
Vorteile:

Public Sub TabelleAktualisieren_NeueVerbindungszeichenfolge()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim strODBCVerbindungszeichenfolge As String
 Set db = CurrentDb
 Set tdf = db.TableDefs("tblAbteilungen")
 strODBCVerbindungszeichenfolge = "ODBC;DRIVER=ODBC Driver 18 for SQL Server;SERVER=amvDesktop2023;" _
 & "DATABASE=SQLServerTabellenVerknuepfen;UID=sa;PWD=********;Encrypt=YES;TrustServerCertificate=YES;"
 tdf.Connect = strODBCVerbindungszeichenfolge
 tdf.RefreshLink
 Application.RefreshDatabaseWindow
End Sub

Listing 1:  Aktualisieren mit neuer Verbindungszeichenfolge

www.vbentwickler.de/487 Seite 39

SQL Server und Co.
SQL Server-Zugangsdaten sicher speichern

Wenn ein Benutzer sich an seinen Rechner angemel-
det hat und seine Access-Anwendung geöffnet hat,
muss er, um auf per ODBC verknüpfte SQL Server-
Tabellen zuzugreifen, auf irgendeine Weise seine Zu-
gangsdaten für den SQL Server und die entsprechende
Datenbank angeben, damit diese zum Aktualisieren
oder Neuanlegen der Tabellenverknüpfungen genutzt
werden können. Wie das Aktualisieren oder Neuver-
knüpfen gelingt, haben wir in aller Ausführlichkeit
im Artikel SQL Server: Tabellen verknüpfen (www.
vbentwickler.de/485) beschrieben. Dazu müssen der
Benutzername und das Kennwort einmalig angegeben
und in die Verbindungszeichenfolge zum Herstellen
der Tabellenverknüpfungen eingetragen werden. Nach
dem initialen Aktualisieren oder Neuanlegen der Ta-
bellenverknüpfungen ist während der aktiven Access-
Session keine weitere Eingabe dieser Daten erforder-
lich, da diese intern gespeichert werden. Erst wenn
der Benutzer diese Access-Session durch Schließen
der Anwendung beendet, werden die temporär gespei-
cherten Zugangsdaten aus dem Speicher gelöscht.

Da jede Eingabe Zeit kostet, wollen wir hier eine Lö-
sung vorstellen, mit der wir die Zugangsdaten an ir-
gendeiner Stelle im System speichern können, damit

der Benutzer diese nicht bei jedem Start der Anwen-
dung manuell eingeben muss. Wir gehen an dieser
Stelle davon aus, dass der Benutzer sich nach Feier-
abend von seinem Rechner abmeldet und diesen auch
in kurzen Pausen sperrt. Ansonsten könnten andere
Benutzer auf den Rechner zugreifen und die Daten der
verknüpften Tabellen mühelos auslesen und in eine
andere Datenbank kopieren.

Dennoch würde er dazu eine gewisse Zeit benötigen.
Sicherstellen wollen wir auf jeden Fall, dass ein Dritter
sich keinen Zugang zu den von uns im System des Be-
nutzers gespeicherten Zugangsdaten zum SQL Server
zu verschaffen. Dies wäre kritisch, weil ein Dritter diese
dann nutzen könnte, um von einem anderen Rechner
in aller Ruhe auf die Tabellen der entsprechenden SQL
Server-Datenbank zuzugreifen und diese zu kopieren,
zu ändern oder zu löschen oder auch neue Daten hin-
zuzufügen.

Die vorgestellte Lösung soll also nicht nur dazu die-
nen, dem Benutzer mehr Komfort beim Starten der
Access-Anwendung zu bieten, indem er nicht jedes
Mal seine SQL Server-Zugangsdaten eingeben muss.
Sie soll auch dafür sorgen, dass diese Zugangsdaten so

SQL Server-Zugangsdaten sicher speichern
Im Artikel »SQL Server: Tabellen verknüpfen« (www.vbentwickler.de/485) haben wir gezeigt, wie
wir die Tabellen eines SQL Servers per ODBC als Tabellenverknüpfung in Access-Datenbanken ver-
fügbar machen können. Dabei gibt es zwei Varianten, um über entsprechende Verbindungszeichen-
folgen auf die Tabellen des SQL Servers zuzugreifen: Windows-Authentifizierung und SQL Server-
Authentifizierung. Bei der ersten werden die Zugangsdaten über den aktuellen Windows-Benutzer
ermittelt. Dieses Kennwort kennt in der Regel nur der Benutzer und die Verknüpfung der Tabellen
kann nach seiner Anmeldung am Rechner ohne weitere Interaktion erfolgen. Bei der SQL Server-
Authentifizierung jedoch müssen zusätzlich die Zugangsdaten des Benutzers zum SQL Server an-
gegeben werden. Damit der Benutzer diese nicht immer manuell eingeben muss, möchten wir diese
sicher speichern – so, dass niemand diese auslesen kann, auch wenn er Zugriff zum Rechner des
Benutzers hat. Wie das gelingt, zeigen wir in diesem Artikel.

SQL Server und Co.
SQL Server-Zugangsdaten sicher speichern

www.vbentwickler.de/487Seite 40

gespeichert werden, dass kein Dritter diese auslesen
kann, auch wenn er uneingeschränkten Zugriff auf den
Rechner hat.

Geeignete Speicherorte
Es gibt verschiedene geeignete Speicherorte für solche
Zugangsdaten. Der naheliegendste ist eine Optionen-
tabelle in der Access-Anwendung selbst. Der Benutzer
müsste einmal seine SQL Server-Zugangsdaten ein-
geben. Diese würden dann direkt nach der Eingabe in
der entsprechenden Tabelle gespeichert werden.

Eine weitere Option ist eine externe Datei – dabei kann
es sich um eine simple Textdatei handeln oder auch
eine XML- oder eine JSON-Datei, in die wir diese In-
formationen in strukturierter Form eintragen können.

Schließlich gibt es noch die Registry. Diese bietet im
Pfad HKEY_CURRENT_USER\Software\VB and
VBA Program Settings einen Bereich, der speziell per
VBA oder VB leicht beschrieben oder ausgelesen wer-
den kann, ohne dass wir Funktionen der Windows-
API bemühen müssen.

All diese Speicherorte haben Vor- und Nachteile ge-
meinsam. Der Vorteil ist, dass man diese nur auslesen
kann, wenn man unter dem entsprechenden Benutzer-
konto angemeldet ist. Voraussetzung dafür ist, dass
sich die Dateien im jeweiligen Benutzerordner befin-
den. Bei dem angesprochenen Registry-Bereich ist das
automatisch sichergestellt, da sich dieser unter dem
Element HKEY_CURRENT_USER befindet, der oh-
nehin nur im Kontext der entsprechenden Benutzer-
anmeldung auslesbar ist.

Aber wenn der Benutzer einmal seinen Arbeitsplatz
verlässt, zum Beispiel um sich einen Kaffee zu holen,
ohne sich abzumelden oder den Bildschirm zu sper-
ren, könnte ein Dritter diese Daten ebenfalls mühelos
auslesen und anschließend von einem anderen Rech-
ner über diesen Zugang auf den SQL Server zugreifen.

Es gilt also, noch eine weitere Sicherheitsstufe zu inte-
grieren.

Sicheres Speichern der Zugangsdaten
Dies geschieht wiederum in zwei Stufen. Die erste
Stufe ist, dass wir die Zugangsdaten nach der Eingabe
und vor dem Speichern durch einen entsprechenden
Algorithmus verschlüsseln. Dieser Algorithmus wird
als Funktion in der Datenbankanwendung hinterlegt.

Nun kann ein Dritter ohne weitere Maßnahmen im-
mer noch das VBA-Projekt der Access-Anwendung
öffnen und Einblick in diesen Algorithmus erhalten,
um diesen dann auf einem anderen Rechner auszu-
führen. Hier folgt die zweite Stufe, indem wir sicher-
stellen, dass Benutzer keine ungesicherte .accdb-Ver-
sion der Access-Anwendung nutzen, sondern nur eine
.accde-Version, die keinen Einblick in den VBA-Code
mehr gewährt. So ist sichergestellt, dass niemand den
Verschlüsselungsalgorithmus ermitteln kann.

Schließlich sollten wir nicht nur einfach den Benutzer-
namen und das Kennwort verschlüsseln, zum Beispiel
mit SHA1. Das Problem ist: Wenn jemand Zugriff auf
die Registry oder die Datei hat, in der die Zugangs-
daten gespeichert sind, kann er einfach alle gängigen
Algorithmen zur Entschlüsselung einmal durchgehen
und wird so früher oder später auf die richtige Metho-
de stoßen und kann die Zugangsdaten entschlüsseln.

Das Zauberwort an dieser Stelle lautet Pepper. So nennt
man eine Zeichenkette, die als zusätzlicher Faktor für
die Verschlüsselung verwendet werden kann. Diesen
Faktor speichern wir wiederum im VBA-Projekt, das
wir durch Umwandeln der Datenbankdatei in eine .ac-
cde weitgehend unlesbar machen.

Weitgehend deshalb, weil es durchaus Unternehmen
gibt, die .accde-Dateien entschlüsseln können, so dass
auch unsere Pepper-Zeichenkette ausgelesen werden
kann. Solche Unternehmen lassen sich aber, wenn sie

www.vbentwickler.de/487 Seite 41

SQL Server und Co.
SQL Server-Zugangsdaten sicher speichern

im legalen Bereich operieren, vom Auftraggeber bestä-
tigen, dass sie berechtigt sind, das VBA-Projekt dieser
Anwendung wieder lesbar zu machen.

Verwenden von DPAPI zum Ver- und
Entschlüsseln
In diesem Artikel verwenden wir keine der üblichen
Verschlüsselungsmethoden wie SHA1 et cetera, son-
dern DPAPI. DPAPI steht für Data Protection API und
ist ein integrierter Windows-Mechanismus, mit dem
Anwendungen Daten einfach und sicher verschlüsseln
können, ohne selbst Kryptographie implementieren zu
müssen.

Die Besonderheit von DPAPI ist, dass es einen Schlüs-
sel verwendet, der an das Windows-Benutzerkonto
oder an den Computer gebunden ist.

Es gibt zwei Modi:

•	 USER-MODE: Hier ist der Schlüssel ist an den
aktuell angemeldeten Windows-Benutzer gebun-
den. Nur dieser Benutzer kann die Daten wieder
entschlüsseln. Dazu kann er die API-Funktionen
CryptProtectData und CryptUnprotectData nut-
zen.

•	 MACHINE-MODE: Hier ist der Schlüssel ist an den
Rechner gebunden. Damit kann jedes Programm
unter jedem Benutzer kann entschlüsseln, was zum
Beispiel für Serverdienste verwendet werden kann.

Für Access-Frontend-Anwendungen ist USER-MODE
perfekt. Wenn wir die Funktion CryptProtectData nut-
zen, wird die zu verschlüsselnde Zeichenkette in einen
Datenblock gepackt. Windows verschlüsselt diesen Da-
tenblock mit einem Schlüssel, der aus dem Windows-
Benutzerpasswort und geheimen Systemschlüsseln
abgeleitet wird. Dies liefert ein Byte-Array zurück, den
wir dann zum Beispiel in der Registry speichern kön-
nen.

Wenn wir später mit der Funktion CrypUnprotect-
Data entschlüsseln, übergeben wir das verschlüsselte
Byte-Array. Windows prüft dann, ob der aktuelle Be-
nutzer der gleiche Benutzer ist, der verschlüsselt hat.
Wenn ja, wird der verschlüsselte Text unverschlüsselt
wieder ausgegeben. Anderenfalls schlägt die Ver-
schlüsselung fehl.

Code zum Ver- und Entschlüsseln
Um eine Verschlüsselung mit einer Pepper-Zeichen-
kette zu nutzen, benötigen wir als Erstes eine Konstan-
te, in der wir diese Zeichenkette speichern:

Private Const APP_PEPPER As String = "DEIN_GEHEIMER_PEPPER"

Hier musst Du Deine eigene Pepper-Zeichenfolge ein-
tragen.

Außerdem benötigen wir die Deklaration zweier API-
Funktionen namens CryptProtectData und Crypt
UnprotectData und zwei weitere API-Funktionen na-
mens RtlMoveMemory und LocalFree. Diese finden
wir, neben dem Typ DATA_BLOB, in Listing 1.

Die Funktion ProtectString
Die Funktion ProtectString übernimmt die Aufgabe,
unsere Zeichenkette, also zum Beispiel den Benutzer-
namen oder das Kennwort sicher zu verschlüsseln, be-
vor sie beispielsweise in der Registry gespeichert wird.
Dabei kombiniert die Funktion den in APP_PEPPER
hinterlegten Pepper mit der Windows-internen DPA-
PI-Verschlüsselung (siehe Listing 2).

Zunächst prüft die Funktion, ob der übergebene String
überhaupt einen Wert enthält. Ist das nicht der Fall,
bricht sie sofort ab und liefert einen leeren Rückgabe-
wert.

Danach wird der Pepper aus APP_PEPPER vor das
eigentliche Klartextpasswort gesetzt. Dieser Pepper
wird nicht mitgespeichert und dient als zusätzliche

SQL Server und Co.
SQL Server-Zugangsdaten sicher speichern

www.vbentwickler.de/487Seite 42

Schutzschicht, da ein Angreifer ohne Kenntnis dieses
Werts den entschlüsselten Text nicht korrekt validie-
ren könnte.

Anschließend wird die zusammengesetzte Zeichen-
kette (APP_PEPPER plus Benutzername/Kennwort)
durch die Funktion StrConv in ein ANSI-Byte-Array
umgewandelt. DPAPI arbeitet intern mit Binärdaten,
daher muss der String zunächst in ein Array von Bytes
transformiert werden. Dieses Bytearray wird danach

in eine DATA_BLOB-Struktur übergeben, die ledig-
lich aus der Anzahl der Bytes und einem Zeiger auf das
erste Byte besteht. Wichtig ist hierbei, dass die Struktur
nicht selbst Daten enthält, sondern direkt auf das vor-
handene Array zeigt.

Nun kommt der zentrale Schritt: Die Funktion ruft
CryptProtectData auf, eine Windows-API-Funktion,
die die Daten benutzergebunden verschlüsselt. Das be-
deutet, dass nur derselbe Windows-Benutzer die Da-

Private Type DATA_BLOB
 cbData As Long
 pbData As LongPtr
End Type

#If VBA7 Then
 Private Declare PtrSafe Function CryptProtectData Lib "crypt32.dll" (_
 ByRef pDataIn As DATA_BLOB, _
 ByVal szDataDescr As LongPtr, _
 ByVal pOptionalEntropy As LongPtr, _
 ByVal pvReserved As LongPtr, _
 ByVal pPromptStruct As LongPtr, _
 ByVal dwFlags As Long, _
 ByRef pDataOut As DATA_BLOB) As Long

 Private Declare PtrSafe Function CryptUnprotectData Lib "crypt32.dll" (_
 ByRef pDataIn As DATA_BLOB, _
 ByVal ppszDataDescr As LongPtr, _
 ByVal pOptionalEntropy As LongPtr, _
 ByVal pvReserved As LongPtr, _
 ByVal pPromptStruct As LongPtr, _
 ByVal dwFlags As Long, _
 ByRef pDataOut As DATA_BLOB) As Long

 Private Declare PtrSafe Sub RtlMoveMemory Lib "kernel32" (_
 ByRef Destination As Any, _
 ByVal Source As LongPtr, _
 ByVal Length As LongPtr)

 Private Declare PtrSafe Function LocalFree Lib "kernel32" (_
 ByVal hMem As LongPtr) As LongPtr
#End If

Listing 1:  API-Deklarationen für das Ver- und Entschlüsseln

www.vbentwickler.de/488 Seite 49

SQL Server und Co.
Dateien im SQL Server speichern mit FileTables

Dateien in Access und der Speicherplatz
Eines der großen Probleme von Access-Datenbanken
ist der vergleichsweise geringe Speicherplatz. Sicher,
wenn wir nur reine Textinformationen oder Zahlen
verwalten, kommen wir damit eine Weile aus.

Soll die Datenbank aber auch in Feldern etwa des Typs
OLE-Objekt oder Anlage noch Elemente wie Bilder
oder Dateien aufnehmen, geraten wir schnell ans Li-
mit.

Unter Access gibt es dabei die Möglichkeit, nur den
Pfad zur jeweiligen Datei zu speichern und diese im
Dateisystem zu belassen, aber damit sind einige Ein-
schränkungen verbunden – zum Beispiel müssen wir
die Pfadangaben ändern, wenn die Datenbank samt
referenzierter Dateien einmal verschoben werden soll
und wir müssen uns selbst darum kümmern, dass die
Daten immer an Ort und Stelle bleiben und gesichert
werden.

Alternativen im SQL Server
Die Möglichkeiten in einer SQL Server-Datenbank
sehen ähnlich aus. Das Pendant zum Anlagefeld oder

dem OLE-Objekt-Feld sind Felder mit dem Datentyp
varbinary(max).

Dies ähnelt allerdings eher dem Datentyp OLE-Object
in Access – die Dateien werden dort im Binärformat
gespeichert, was bedeutet, dass wir diese, wenn wir
beispielsweise Bilddateien in einem Bildsteuerelement
anzeigen wollen, zuvor erst in das geeignete Format
umwandeln müssen.

Praktischer für diesen Fall ist unter Access das Anlage-
feld. Darin gespeicherte Bilder lassen sich durch Anga-
be des jeweiligen Feldes als Steuerelementinhalt direkt
im Bildsteuerelement anzeigen.

FileTable: Kombination aus Dateisystem
und Tabelle
Daher ist die Verwendung eines sogenannten FileTa-
bles unter SQL Server eine geeignete Alternative. Zwar
lässt sich ein Bildsteuerelement nicht direkt an ein Feld
dieser FileTable binden, aber in der FileTable werden
die Pfadangaben zur jeweiligen Datei gespeichert, den
wir ebenfalls als Datenquelle von Bildsteuerelementen
angeben können.

Dateien im SQL Server speichern mit FileTables
In Access gibt es verschiedene Möglichkeiten, Dateien zu speichern. Diese kann man zum Beispiel
in Anlagefeldern ablegen, oder man belässt die eigentlichen Dateien im Dateisystem und notiert
in den Tabellen lediglich den Pfad zu den Dateien oder auch nur die Dateinamen. Welche Variante
man wählt, hängt letztlich von der Menge und der Größe der Dateien ab, sprich: vom benötigten
Speicherplatz. Der ist nämlich in Access-Datenbanken auf zwei Gigabytes begrenzt. In SQL Server-
Datenbanken sieht dies ganz anders aus. Selbst bei Verwendung der kostenlosen Express-Edition
dürfen die einzelnen Datenbank-Dateien bis zu zehn Gigabytes an Platz auf der Festplatte einneh-
men. Auch hier gibt es verschiedene Varianten zum Speichern der Dateien. Die erste ist, die Dateien
in varbinary(max)-Feldern zu hinterlegen. Oder man nutzt dazu sogenannte Filetables. Hier wer-
den die Dateien in einem speziell dazu vorgesehenen Bereich der Festplatte abgelegt, aber unter die
Kontrolle des SQL Servers gestellt – und gleichzeitig über einen speziellen Typ von Tabelle verwal-
tet. Wie das gelingt, zeigen wir in diesem Artikel.

SQL Server und Co.
Dateien im SQL Server speichern mit FileTables

www.vbentwickler.de/488Seite 50

Gleichzeitig können wir, entsprechende Berechtigungen
vorausgesetzt, in einer FileTable gespeicherte Dateien in
einem Bildsteuerelement von Access anzeigen.

Daher schauen wir uns in diesem Artikel einmal genau
an, wie wir eine FileTable im SQL Server erstellen und
nutzen können.

In weiteren Artikeln betrachten wir, wie die in einer File-
Table-Tabelle gespeicher-
te Bilddateien in einem
Access-Bildsteuerelement
angezeigt werden können.

Voraussetzungen
für den Einsatz von
FileTables

Die erste und wichtigste
Voraussetzung ist die Ak-
tivierung eines speziellen
Features des SQL Servers,
nämlich FILESTREAM.

Dieses Feature wurde
mit SQL Server 2008 eingeführt, FileTable gibt es seit
2012. Wenn Du also nicht mit einer vorsintflutlichen
Version von SQL Server arbeitest, sollten die Voraus-
setzungen grundsätzlich erfüllt sein.

FILESTREAM ist standardmäßig nicht aktiviert, wir
müssen diese Funktion also erst einmal an den Start
bringen.

FILESTREAM aktivieren
Wir beschreiben das Aktivieren von FILESTREAM in
den folgenden Abschnitten für eine frisch installierte
Instanz der SQL Server Express Edition.

Dazu starten wir den SQL Server-Konfigurations-Manager,
was zum Beispiel für SQL Server 2022 wie folgt gelingt:

Bild 1:  Aufrufen des SQL Server-Konfigurationsmanagers

Bild 2:  Anzeigen der Eigenschaften der SQL Server-Instanz

Bild 3:  Eigenschaften mit dem FILESTREAM-Bereich

www.vbentwickler.de/488 Seite 51

SQL Server und Co.
Dateien im SQL Server speichern mit FileTables

•	 Ausführen-Fenster mit
Windows + R starten

•	 Dort geben wir wie in
Bild 1 SQLServerMa-
nager16.msc ein (Ver-
sionsnummer entspre-
chend Deiner Version
anpassen).

Danach klicken wir dop-
pelt auf den Eintrag SQL
Server-Dienste und dann
mit der rechten Maustaste
rechts auf die gewünschte
Instanz, hier SQL Ser-
ver (SQLEXPRESS) und
wählen den Eintrag Ei-
genschaften aus – wobei
der in Klammern angege-
bene Name der Instanz-
name ist und auch abwei-
chen kann (siehe Bild 2).

Im nun erscheinenden
Dialog wechseln wir zur
Registerseite FILESTRE-
AM (siehe Bild 3).

Dort finden wir folgende
Optionen:

•	 FILESTREAM für
Transact-SQL-Zugriff
aktivieren: Aktiviert
den FILESTREAM auf
SQL Server-Basis.

•	 FILESTREAM für
E/A-Datenzugriff ak-
tivieren: Aktiviert FI-

Bild 4:  Neustart des SQL Servers

Bild 5:  FILESTREAM in den SQL Server-Eigenschaften im SQL Server Management Studio

SQL Server und Co.
Dateien im SQL Server speichern mit FileTables

www.vbentwickler.de/488Seite 52

LESTREAM für den
Zugriff über das Datei-
system.

•	 Windows-Freigabena-
me: Gibt den Namen
des Verzeichnisses an,
in dem die Dateien ge-
speichert werden.

•	 Zugriff von Remotec-
lients auf FILESTRE-
AM-Daten zulassen:
Erlaubt den Zugriff von
anderen Rechnern im Netzwerk.

Hier aktivieren wir die ersten beiden Optionen und
belassen den Windows-Freigabenamen bei SQLEX-
PRESS.

Danach muss der SQL Server neu gestartet werden,
was wir wiederum im SQL Server Konfigurationsma-
nager erledigen, indem
wir dort den Kontextme-
nü Neu starten aufrufen
(siehe Bild 4).

Alternativ starten wir den
SQL Server direkt im SQL
Server Management Stu-
dio neu, indem wir mit
der rechten Maustaste
auf den Eintrag für den
Server klicken und den
Befehl Neu starten betä-
tigen.

Die hier vorgenommenen
Einstellungen können wir
auch über das SQL Server
Management Studio vor-

nehmen. Dazu zeigen wir die Eigenschaften des Ein-
trags für den SQL Server an und wechseln dort zur Seite
Erweitert (siehe Bild 5).

Wenn wir FILESTREAM für den Zugriff über das
Dateisystem aktiviert haben, finden wir im Windows
Explorer eine entsprechende Freigabe vor (siehe
Bild 6). Wenn diese nicht direkt sichtbar ist, geben

Bild 6:  Freigabe für SQLEXPRESS

Bild 7:  Erweitern auf Vollzugriff

www.vbentwickler.de/488 Seite 53

SQL Server und Co.
Dateien im SQL Server speichern mit FileTables

wir in der Adressleiste des Windows Explorers fol-
gendes ein:

\\Rechnername

Dann erscheinen zunächst die SQL Server-Instanzen.
Hier klicken wir im Falle der Express-Edition doppelt
auf SQLEXPRESS.

Auf diese können wir aber aktuell noch nicht zugreifen.

Dazu müssen wir im SQL Server Management Studio
noch den vollen Zugriff aktivieren (siehe Bild 7).

Danach können wir schließlich auf die Freigabe am-
vDesktop2023\SQLEXPRESS (oder wie sie bei Dir
heißt) zugreifen, finden dort aber bisher weder Ordner
noch Dateien vor.

Wozu diese Freigabe benötigt wird, erläutern wir in
den folgenden Abschnitten.

Die FileTable-Technik basiert auf FILESTREAM. Da-
mit können wir sowohl Dateien über die Datenbank
speichern und diese dann über das Dateisystem öffnen
als auch Dateien in dem für die Datenbank vorgesehe-
nen Verzeichnis speichern und diese damit unter den
Zugriff der SQL Server-Datenbank stellen.

FILESTREAM-Beispieldatenbank erstellen
Zu Beispielzwecken erstellen wir zunächst eine neue
Datenbank, die mit FILESTREAM ausgestattet ist.

Das erledigen wir im SQL Server Management Studio,
indem wir in einer neuen Abfrage den Code aus Lis-
ting 1 ausführen.

Danach erscheint die neue Datenbank wie in Bild 8 im
SQL Server Management Studio.

FILESTREAM-Verzeichnis festlegen
Weiter oben haben wir bei der Anpassung des SQL
Servers für die Verwendung von FILESTREAM und
FileTable bereits einen Windows-Freigabenamen fest-
gelegt, unter dem die vom SQL Server verwalteten
Dateien aufzufinden sein sollen.

Diese Freigabe wird von der kompletten SQL Server-
Instanz genutzt, was bedeutet, dass nicht nur eine,
sondern auch mehrere Datenbanken darauf zugreifen.

CREATE DATABASE FileTableDB
ON
PRIMARY (NAME=FileTableDB,
FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL17.SQLEXPRESS\MSSQL\DATA\FileTableDB.mdf'),
FILEGROUP FileTableDB_GROUP CONTAINS FILESTREAM(NAME=FileTable_DB,
FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL17.SQLEXPRESS\MSSQL\DATA\FileTableDB')
LOG ON (NAME=FileTableDB_LOG,
FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL17.SQLEXPRESS\MSSQL\DATA\FileTableDB.ldf')

Listing 1:  Erstellen einer Datenbank mit FILESTREAM

Bild 8:  Die neue FileTable-Datenbank

SQL Server und Co.
Dateien im SQL Server speichern mit FileTables

www.vbentwickler.de/488Seite 54

Deshalb müssen wir pro Daten-
bank noch ein Unterverzeichnis
erstellen. Dieses legen wir in den
Eigenschaften der Datenbank
auf der Seite Optionen unter FI-
LESTREAM fest.

Stelle also für die Eigenschaft FI-
LESTREAM-Verzeichnisname
einen entsprechenden Wert wie
etwa FileTableDB ein und lege
mit der Eigenschaft Nicht trans-
aktionsgebundener FILES-
TREAM-Zugriff fest, wie weit
der Zugriff von außerhalb des
SQL Servers zugelassen werden
soll – also beispielsweise über
den Windows Explorer (siehe
Bild 9). Das Verzeichnis können
wir auch mit folgender Anwei-
sung festlegen:

ALTER DATABASE FileTableDB SET

FILESTREAM(DIRECTORY_NAME='FileTa-

bleDB');

Und diese Anweisung stellt die
Zugriffsart auf FULL, REA-
DONLY oder OFF ein:

ALTER DATABASE FileTable SET FILESTREAM(NON_TRANSACTED_AC-

CESS=FULL);

Wenn wir nun noch einmal den Windows Explorer
bemühen, werden wir unter der bereits vorhandenen
Freigabe einen neuen Ordner vorfinden, der den an-
gegebenen Namen trägt (siehe Bild 10).

Zum aktuellen Zeitpunkt können wir allerdings noch
keine Dateien über das Dateisystem in diesem Ver-
zeichnis ablegen. Um dies zu ändern, müssen wir eine

Bild 9:  Anlegen eines Verzeichnisses für die FileStream-Datenbank

Bild 10:  Das Verzeichnis für die FileTable-Datenbank

Bild 11:  Erstellen einer neuen FileTable

