wsaase 06/2025

Access, SOL und

Cloud AUTOMATION

MAGAZIN FUR DIE PROGRAMMIERUNG VON MICROSOFT ACCESS,
SOL SERVER UND CLOUD-AUTOMATIONEN MIT VBA UND CO.

IN DIESEM HEFT:

SOL SERVER-DATENBANK ORDNER UND DATEIEN EARLY UND LATE BINDING
AKTUALISIEREN IM FORMULAR IM GRIFF

Lerne, wir Du SQL Server- Zeige Ordner und Dateien in einem Lerne die Unterschiede zwischen
Backends vom Frontend aus ListView-Steuerelement in eine Early und Late Binding und die
automatisch aktualisierst. Access-Formular an. Vor- und Nachteile kennen.

André Minhorst Verlag

vbentwickler.de

EDITORIAL

Access, SOL und
Cloud AUTOMATION

Aus VB-Entwickler wird

Access, SQL und Cloud Automation

Um der Entwicklung in der Welt rund um VBA,VB, Access und den iibrigen Office-
Anwendungen gerecht zu werden, haben wir den Titel dieses Magazins geandert
- und damit wird sich auch der Inhalt auf neue Schwerpunkte konzentrieren.

In Access, SQL und Cloud Automation werden wir uns
um alle Themen kilmmern, die iiber das reine Program-
mieren von Access-Anwendungen hinausgehen. Dabei
behandeln wir die folgenden Schwerpunkte:

e Access: Hier zeigen wir fortgeschrittene Techniken rund
um die Entwicklung von Access-Anwendungen. VBA-
Programmierung, Fehlerbehandlung, API-Programmie-
rung — alles, was iiber das reine Erstellen von Tabellen,
Abfragen, Formularen und Berichten hinausgeht.

e SQL Server: Wir zeigen, wie man zum SQL Server mi-
griert, wie Access optimal mit SQL Server zusammen-
arbeitet und wie wir von Access aus performant auf
SQL Server-Datenbanken zugreifen konnen.

e Cloud: Wer langfristig mit Access arbeiten mdchte,
muss Kompatibilitit zu den vielen verschiedenen
Cloud-Diensten und Saas-Losungen herstellen und in
der Lage sein, diese von Access aus zu steuern und
Daten mit diesen auszutauschen. Genau darum Kim-
mern wir uns, zum Beispiel durch Verwendung von VBA
und Rest APIs.

Und natlirlich automatisieren wir alles rund um Microsoft
Access. Egal, ob mit reinem VBA innerhalb der Anwendung
oder durch COM-DLLs, mit denen wir Funktionalititen in
Form von Bibliotheken bereitstellen oder durch COM-Add-
Ins, mit denen wir die Funktionen der Benutzeroberflache
von Access oder dem VBA-Editor erweitern.

Alle aktuellen Artikel in unserer neuen
Lernplattform

AuBerdem findest Du ab jetzt alle Artikel in unserer neuen,
modernen Lernplattform unter der folgenden Adresse:

https://minhorst.Tearningsuite.

io

Dafiir musst Du Dich dort allerdings erst einmal regist-
rieren. Dein unschlagbarer Vorteil: Du brauchst Dich nur
einmal zu registrieren und Deine Zugangsdaten gelten von
da an flir ein gesamtes Jahr.

Die Registrierung fiihrst Du hier durch:
https://andreminhorst.de/anmeldung-an-Tearningsuite

Bitte gib dort neben Deinem Vornamen, Deinem Nachna-
men und Deiner E-Mail-Adresse den Benutzernamen und
das Kennwort an, dass Du auf Seite 2 dieses PDF-Doku-
ments findest. Danach bekommst Du eine Mail mit einem
Link, iber den Du die Registrierung abschlieBen kannst.

Du findest in der Lernplattform (ibrigens auch ein Forum,
in dem Du Dich mit mir und anderen Lesern direkt aus-
tauschen kannst!

Achtung: vbentwickler.de bleibt erhalten!

Aus technischen Griinden findest Du die Artikel weiterhin
auf der Webseite https://www.vbentwickler.de.

Viel SpaB beim Erkunden der neuen Lernplattform!

iz

Dein André Minhorst

www.vbentwickler.de

Seite 3

ACCESS PROGRAMMIEREN
ACCESS: ORDNER UND DATEIEN IM FORMULAR ANZEIGEN

Access, SOL und
Cloud AUTOMATION

Access: Ordner und Dateien im Formular anzeigen

In Access-Anwendungen kann es interessant sein, Ordner und Dateien zu einem Datensatz verfiig-
bar zu machen. Das bietet sich an, wann immer Dateien im Kontext eines Datensatzes in einem
bestimmten Bereich im Dateisystem gespeichert sind - etwa zu Kunden, Projekten, Produkten
und anderen Tabellen. In diesem Artikel zeigen wir, wie man die Verzeichnisse und Dateien eines
Verzeichnisses iiber ein ListView-Steuerelement einfach in einem Formular anzeigen kann. Die
Standardfunktionen zu diesen Elementen sollen direkt iiber die Eintrige dieses ListView-Steuer-
elements verfiigbar sein - zum Beispiel das Offnen in der jeweiligen Zielanwendung, das Loschen
einer Datei oder auch das Navigieren in unter- oder iibergeordneten Verzeichnissen.

Wenn wir Ordner und Dateien in einem List- 55 Bezichungen - O X
View-Steuerelement anzeigen wollen, haben -
wir verschiedene Moglichkeiten, diese Ele- tbIProdukte ” : .
mente einzulesen. Wir konnen diese in einer Rr— thikategoren

rodu 1 .
Tabellenstruktur mit Tabellen fir Verzeich- Produkt J_ B KategorielD
nisse und Dateien speichern und diese Daten KategorielD o= Kategorie
in das ListView-Steuerelement einlesen oder Verzeichnis
einfach die Daten direkt aus dem Verzeichnis Einzelpreis

holen.

Da wir immer nur die Dateien aus einem 4 @

Verzeichnis anzeigen wollen und davon aus-
gehen, dass es sich dabei nicht um Hunderte
Elementen handelt, gehen wir den letzteren
Weg und lesen die Elemente einfach direkt aus dem
Dateisystem ein.

Wir benétigen also keine Tabellen, um die Elemen-
te zwischenzuspeichern, sondern holen diese immer
beim Anzeigen eines Datensatzes. So ist auch sicher-
gestellt, dass wir den aktuellen Dateibestand anzeigen.

Datenmodell der Anwendung

Daher fiigen wir der Beispielanwendung nur die bei-
den Tabellen aus Bild 1 hinzu. Die Tabelle tbIProdukte
enthalt als wichtigste Information das Verzeichnis, in
dem sich die Dateien zum jeweiligen Produkt befin-
den.

Bild 1: Tabellen der Beispielanwendung

Formular der Anwendung

Anschlielend legen wir ein neues, leeres Formular na-
mens frmProdukte in der Entwurfsansicht an.

Diesem weisen wir iiber die Eigenschaft Datensatz-
quelle die Tabelle tblProdukte hinzu und ziehen alle
Felder dieser Tabelle aus der Feldliste in den Formular-
entwurf.

Die Felder ordnen wir anschlieflend wie in Bild 2 an.
Das Textfeld Verzeichnis versehen wir mit dem Na-
men txtVerzeichnis, auflerdem fiigen wir neben die-
sem eine Schaltfliche zum Auswihlen des Verzeich-
nisses hinzu.

Seite 4

www.vbentwickler.de/493

ACCESS PROGRAMMIEREN
ACCESS: ORDNER UND DATEIEN IM FORMULAR ANZEIGEN

Access, SOL und

Cloud AUTOMATION

Fir das Textfeld txtVerzeichnis stellen

% frmProdukte

wir die Eigenschaft Horizontaler An-
ker auf Beide ein, fiir die Schaltfliche
cmdOrdnerauswahl auf Rechts und

* ich
% ProduktiC
t

Produkt

fiir Bezeichnungsfeld des Textfel- ‘
tir das Bezeic ugSCddS extte E'Verzeichnis

des auf Links. Dadurch vergroflert sich
das Textfeld, wenn wir die Breite des | 2
Formulars vergroflern.

KategorielD: | KategorielD
Einzelpreis

w

Ordner auswihlen °
T v
Fiir die Schaltfliche hinterlegen wir die | « >
Prozedur aus Listing 1. Bild 2: Das Formular frmProdukte
Diese Prozedur priift, ob bereits ein
Verzeichnis im Textfeld gespeichert Private Sub cmdOrdnerauswahl_CTick()
ist. Falls ja, wird es der Variablen strI- Dim strinitialFolder As String
nitialFolder zucewiesen. anderenfalls If Not Len(Nz(Me.txtVerzeichnis, 0)) = 0 Then
ugew , s .
- . & strinitialFolder = CurrentProject.Path
erhilt strInitialFolder den Pfad zur Flse
aktuellen Datenbank (CurrentProject. strinitialFolder = Me.txtVerzeichnis
Path). End If
Me.txtVerzeichnis = ChooseFolder(strinitialFolder)
Danach ruft die Prozedur die Funktion | End Sub
ChooseFolder auf und iibergibt dieser | Listing 1: Prozedur zum Auswihlen des Ordners fiir das aktuelle Produkt
den Wert der Variablen strInitialFol-
der als Parameter.
Verweise - prj0rdnerUndDateienimFarmularAnzeigen X
Diese verwendet den eingebauten Office-
. . . . Verfiigbare Verweise:
Dialog zum Auswidhlen von Verzeichnissen.
. | Visual Basic For Applications Abbrech
Dazu benétigen wir einen Verweis auf die Bi- v|Microsoft Access 16.0 Object Library | rechEn
: s s s v OLE Automation
bliothek Microsoft Office 16.0 Ob]eCt Libra- v Microsoft Office 16.0 Access database engine Object Durchsuchen...
ry, den wir iiber den Verweise-Dialog hinzu- ¥ e A A B
FCWZMEn +
tiigen (siehe Bild 3). Database
Database Prioritdt)
Microsoft ActiveX Data Objects 6. 1 Library Hilfe
. . . . Microsoft Visual Basic for Applications Extensibility 5. ﬂ
Die Funktion ChooseFolder deklariert eine The Gaogle APIs Client Library is & runtime dient for |
. The Google APIs Core Library contains the Google AF
Objektvariable auf Basis der FileDialog- AccessCOMAddIn
. . . . ArceasihilitvCnlAdmin 1.0 T Likw
Klasse und eine Variable zum Zwischenspei- TSR A LA e e
chern des gewihlten Verzeichnisses (siehe Microsoft Office 16.0 Object Library
LiStil’lg 2). Pfad: C:\Program Files (x86)\Microsoft Office root\WFS\ProgramFilesComi
Sprache: Voreinstellung
Dann weisen wir der Variablen eine Instanz
der Klasse FileDialog zu und iibergeben da- Bild 3: Verweis auf die Office-Bibliothek
www.vbentwickler.de/493 Seite 5

Access, SOL und

Cloud AUTOMATION

ACCESS PROGRAMMIEREN
ACCESS: ORDNER UND DATEIEN IM FORMULAR ANZEIGEN

bei den Parameter msoFileDialogFol-
derPicker. Dann tragen wir die Werte
tiir die Eigenschaften Title, ButtonNa-
me und InitialFilename ein und rufen
die Methode Show auf, um den Dialog
anzuzeigen.

Der Code stoppt an dieser Stelle, bis
der Benutzer ein Verzeichnis ausge-
wahlt hat, und liest dann das gewahl-
te Verzeichnis aus. Dieses liefert die

PubTlic Function ChooseFolder(strinitialFolder As String)
Dim objFileDialog As Office.FileDialog
Dim strTemp As String

Set objFileDialog = Application.FileDialog(msoFileDialogFolderPicker)

With objFileDialog
.Title = "Verzeichnis auswdhlen"
.ButtonName = "Auswédhlen”
.InitialFilename = strinitialFolder
If .Show = True Then
strTemp = .SelectedItems(1)
End If
End With
ChooseFolder = strTemp
End Function

Funktion schlieSlich als Ergebnis zu-

riick, sodass das gewdhlte Verzeichnis

Listing 2: Funktion zum Auswiéhlen eines Ordners

von der aufrufenden Prozedur in das
Textfeld txtVerzeichnis eingetragen
werden kann.

ListView zur Anzeige der Ordner und
Dateien hinzufiigen

Nun fiigen wir unterhalb der bisher angelegten Steuer-
elemente ein ListView-Steuerelement ein. Dazu wihlen
wir im Ribbon den Befehl Formularentwurf]|Steuer-
elemente|ActiveX-Steuerelemente aus. Im folgenden
Dialog selektieren wir den Eintrag Microsoft List-
View Control, version 6.0 (siche Bild 4), klicken auf
OK und passen anschlieflend die Grofle des Steuerle-
ments so an, dass es die vollstindige Formularbreite
einnimmt.

Fiir das ListView-Steuerelement legen wir den Namen
ctlListView fest.

ImageList zum Speichern von Icons
hinzufiigen

Auflerdem fiigen wir auf dem gleichen Weg ein Image-
List-Steuerelement zum Formular hinzu und nennen
es ctllmageList.

Icons einlesen

Wir wollen im ListView-Steuerelement zunachst zwei
Spalten anzeigen. Die erste soll das Icon der Anwen-

ActiveX-Steuerelement einfiigen ? *

ActiveX-Steuerelement auswahlen:

Microsoft ImageComboBox Control, version 6.0
Microsoft Imagelist Control, version 6.0
Microsoft InkEdit Contral

Microsoft InkPicture Contral

Microsoft MonthView Control 8.0 [SPE)
Microsoft Qutlook Body Control

Microsoft Qutlook Business Card Control
Microsoft Cutlook Category Control
Microsoft Cutlook Check Box Control
Microsoft Cutlook Combo Box Control
Microsoft OQutlook Command Button Control
Microsoft Outlook Contact Photo Control
Microsoft Qutlook Date Contral

Microsoft Qutlook Frame Header Control

Ergebnis

Flgt ein Microsoft ListWiew Control, version 6.0 in lhr
Dokument ein,

Abbrechen

Bild 4: ListView-Steuerelement hinzufiigen

dung enthalten, mit der die jeweilige Datei standard-
méfig gedffnet wird, die zweite den Dateinamen.

Diese Bilder miissen wir allerdings erst einmal er-
mitteln. Am besten wire es, wenn diese in der Tabelle
MSysResources landen, wo wir sie mit wenigen Code-
zeilen auslesen und dem ImageList-Steuerelement

Seite 6

www.vbentwickler.de/493

ACCESS PROGRAMMIEREN

ACCESS: ORDNER UND DATEIEN IM FORMULAR ANZEIGEN

Access, SOL und

Cloud AUTOMATION

zuweisen konnen. Die grofiere Herausforde- & MsysResources - 0o X
rung ist jedoch, die Bilder fiir die verschiede- Y Extension - Id ~| Name ~-| Type -
nen Dateitypen zu erhalten 1) thmx 1 Office Theme thmx
YP ’ m{l]- png 2 folder img
1) png 3 lvw_folder img
Wie das gelingt, haben wir in einem eigenen ﬁ'{l} Ico 17 ico_pdf img
Artikel namens VBA: Datei-Icons einlesen B ico 18 ico_indd 'me
X i 1) ICO 19 ico_accdb img
und speichern (www.vbentwickler.de/492) 51{1} e 20 ico_laccdb | img
beschrieben. (1) ICO 21 ico_png img
['"I{1} 1CO 22 ico_idlk img
. . . i (o) (Neu)
Das Ergebnis der dort beschriebenen Techni-
ken ist eine Funktion namens SaveFileIcon- R
TOMSYSRCSOUI’CCS, der wir den Namen der Datensatz: |4 Tvand | b M obs | N7 Suchen 4 >
Datei, deren Icon wir erhalten wollen, und Bild 5: Die Tabelle mit den Datei-Icons

einige weitere Informationen tibergeben. Als
Ergebnis landen die gewiinschten Dateien wie in Bild 5
in der Tabelle MSysResources.

Dateien in das ListView-Steuerelement
einlesen

Die Dateien sollen immer beim Anzeigen eines Daten-
satzes im Formular frmProdukte in das ListView-
Steuerelement geladen werden.

Deshalb fiillen wir die Prozedur, die durch das Ereig-
nis Beim Anzeigen ausgelost wird, mit dem Aufruf der
Funktion FillListView, die wir im Anschluss beschrei-
ben. Dieser Funktion tibergeben wir den Pfad aus dem
Feld txtVerzeichnis:

Private Sub Form Current()
Call FiTlListView(Nz(Me.txtVerzeichnis, ""))
End Sub

Den ersten Teil der Funktion FillListView finden wir
in Listing 3. Nach dem Deklarationsteil referenzieren
wir das ListView- und das ImageList-Steuerelement
mit den Variablen objListView und objImageList.
Dabei greifen wir jeweils tiber die Object-Eigenschaft
auf das eigentliche ActiveX-Objekt zu, um mit allen
Eigenschaften und Methoden der MSComctl-Steuer-
elemente arbeiten zu kénnen.

Dann schalten wir das Neuzeichnen des Formulars
aus, bis das ListView-Steuerelement vollstandig gefiillt
ist. Fiir das ListView-Steuerelement nehmen wir an-
schlieflend einige grundlegende Einstellungen vor.

Diese konnte man teilweise auch direkt im Eigenschat-
tenblatt des Steuerelements setzen. Da wir jedoch in
vielen Formularen identische Einstellungen benétigen,
haben wir uns angewéhnt, diese Konfiguration per
VBA vorzunehmen und bei Bedarf in andere Formu-
larmodule zu iibernehmen.

Auf diese Weise behalten wir die vollstindige Kontrol-
le Giber das Verhalten des ListViews im Code.

Bevor wir das ListView konfigurieren, fithren wir eine
wichtige Initialisierung durch: Zunéchst 16sen wir eine
eventuell bestehende Zuordnung der ImageList zum
ListView, indem wir die Eigenschaft Smalllcons auf
Nothing setzen.

Anschlielend leeren wir sowohl die vorhandenen Ein-
trage im ListView als auch die ListImages-Auflistung
der ImageList. Dieser Schritt ist entscheidend, da An-
derungen an einer ImageList zur Laufzeit nur dann
stabil funktionieren, wenn sie nicht gleichzeitig von
einem ListView-Steuerelement verwendet wird.

www.vbentwickler.de/493

Seite 7

VBA-PROGRAMMIERUNG
VBA: DATEI-ICONS EINLESEN UND SPEICHERN

Access, SOL und

Cloud AUTOMATION

VBA: Datei-Icons einlesen und speichern

Symbole und Icons spielen in Microsoft-Access-Anwendungen eine oft unterschitzte Rolle. Dabei

konnen sie die Bedienbarkeit und Verstindlichkeit einer Datenbank erheblich verbessern - ins-

besondere dann, wenn Dateien, Ordner oder Dokumenttypen visuell unterschieden werden sol-

len. Wihrend Access fiir viele Steuerelemente wie TreeView, ListView, Symbolleisten oder Ribbon-

Schaltflichen grundsitzlich Icon-Unterstiitzung bietet, stellt sich in der Praxis hiufig die Frage:

Wie lassen sich die echten System-Icons von Dateien - so wie sie auch im Windows-Explorer ange-

zeigt werden - in einer Access-Anwendung verwenden? Genau das zeigen wir in diesem Artikel und

liefern auch noch das Know-how, um die eingelesenen Icons direkt in der Tabelle MSysResources zu

speichern. Von dort kdnnen wir sie beispielsweise in ein ImageList-Steuerelement schreiben - um

sie dann in TreeView- und ListView-Steuerelementen anzuzeigen.

Mit Bordmitteln von Access ist

% fremProdukte — O >
das Ermitteln der Icon-Datei- > !
] o ProduktlD: KategorielD: |Magazine ~
en nicht moglich. Stattdessen ¢ &
Produkt: Access im Unternehmen Einzelpreis: 159,00 €

ist ein gezielter Zugrift auf die
Windows-Shell
um Datei-Icons dynamisch zu

erforderlich,

| Dateiname

Verzeichnis: |C:\Users\User\Dropbox\Daten\Business\Projekte\Fachmagazin

ermitteln und fiir die eigene
Benutzeroberfliche nutzbar zu m
machen.
Iﬂ picO01l.png
|é1 pic002 png
Genau hier setzt die in diesem 2] picooz.png
Artikel vorgestellte Technik I: pic0D4.png
an: Mithilfe der Windows-API
lassen sich die systemweit re-
gistrierten Icons fiir beliebi-
ge Dateitypen auslesen, in ein e Toa

OrdnerUndDateienimFormularanzeigen.accdb
OrdnerUndDateienimFormularAnzeigen.indd
OrdnerUndDateienimFormularanzeigen.laccdb
OrdnerUndDateieninAccessEinlesen.accdb

~ordnerunddateienim~nti725.idlk

L 1

'|_' suchen

ImageList-Steuerelement iiber-
nehmen und anschlieffend in
verschiedenen Access-Steuer-

elementen einsetzen.

Der grofle Vorteil dieser Vorgehensweise liegt darin,
dass die Icons automatisch dem jeweils installierten Pro-
gramm entsprechen. PDF-Dateien, Word-Dokumente,
ZIP-Archive oder ausfiithrbare Dateien werden genauso
dargestellt, wie der Benutzer sie aus dem Windows-Ex-
plorer kennt - also ohne zusétzliche Grafikdateien.

Bild 1: Dateien mit Icons in einem ListView-Steuerelement

Der Artikel zeigt Schritt fiir Schritt, wie diese Technik
umgesetzt wird, wie sich Icons performant zwischen-
speichern lassen und an welchen Stellen einer Access-
Datenbank sie sinnvoll eingesetzt werden kénnen.

Die Icons kénnen wir etwa fiir die Anzeige von Datei-
en in einem ListView-Steuerelement in einem For-
mular nutzen (siehe Bild 1), wie wir es im Artikel

www.vbentwickler.de/492

Seite 15

Access, SOL und VBA-PROGRAMMIERUNG
Cloud AUTOMATION VBA: DATEI-ICONS EINLESEN UND SPEICHERN

#If VBA7 Then
Private Declare PtrSafe Function SHGetFileInfo Lib "shel132.d11" Alias "SHGetFileInfoW" (_
ByVal pszPath As LongPtr, ByVal dwFileAttributes As Long, _
psfi As SHFILEINFO, ByVal cbFileInfo As Long, _
Byval uFlags As Long) As LongPtr
#E1se
Private Declare Function SHGetFileInfo Lib "shel132.d11" Alias "SHGetFileInfoW" (_
ByVal pszPath As Long,
ByVal dwFileAttributes As Long,
psfi As SHFILEINFO,
ByVal cbFileInfo As Long, _
ByVal uFlags As Long) As Long
#End If

Private Declare PtrSafe Function OleCreatePicturelndirect Lib "oleaut32.d11" (_
ByRef picDesc As PICTDESC, _
ByRef RefIID As GUID, _
ByVal fPictureOwnsHandle As Long,
ByRef IPic As Object) As Long

Private Type GUID
Datal As Long
Data2 As Integer
Data3 As Integer
Data4(7) As Byte

End Type

Private Type PICTDESC
cbSizeofStruct As Long
picType As Long
hImage As LongPtr
XExt As Long
yExt As Long

End Type

Private Type SHFILEINFO
hIcon As LongPtr
ilcon As Long
dwAttributes As Long
szDisplayName As String * 260
szTypeName As String * 80

End Type

Private Const PICTYPE ICON = 3

Private Const SHGFI_ICON = &H100

Private Const SHGFI SMALLICON = &H1

Private Const SHGFI LARGEICON = &HO

Private Const SHGFI USEFILEATTRIBUTES = &H10
Private Const FILE ATTRIBUTE NORMAL = &H80

Listing 1: API-Deklarationen

Seite 16 www.vbentwickler.de/492

VBA-PROGRAMMIERUNG
VBA: DATEI-ICONS EINLESEN UND SPEICHERN

Access, SOL und

Cloud AUTOMATION

Access: Ordner und Dateien im Formular anzeigen
(www.vbentwickler.de/493) vorstellen.

Vorbereitung: API-Funktionen und
-Deklarationen

Fir die nachfolgend vorgestellten Techniken beno-
tigen wir als Erstes eine Reihe von API-Funktionen,
Konstanten und Typen.

Diese haben wir in Listing 1 zusammengestellt.

Speichern von Icon-Dateien in der Tabelle
MSysResources

Die Tabelle MSysResources speichert die fiir eine Ac-
cess-Anwendung notwendigen Ressourcen wie etwa
die Bilddateien, die in Formularen, Berichten und
Steuerelementen wie der Schaltfliche oder dem Bild-
Steuerelement angezeigt werden.

Dies ist der Platz, an dem wir auch die Icon-Dateien
speichern konnen. Diese konnen wir dann beispiels-
weise von dort in ein ImageList-Steuerelement iiber-
tragen, um sie von dort aus in einem TreeView- oder
ListView-Steuerelement anzuzeigen.

Funktion zum Speichern von Icon-Dateien

Die Hauptfunktion heift SaveFileIconToMSysRe-
sources und erwartet drei Parameter:

o strFilePath: Pfad der Datei, dessen Icon wir spei-
chern wollen

o strResourceName: Name, unter dem die Datei in
der Tabelle MSysResources gespeichert werden soll

« bolSmalllcon: Gibt an, ob ein kleines Icon gespei-
chert werden soll (16 x 16 Pixel)

Optional ByVal bolSmallIcon As Boolean = True)

Dim hIcon As LongPtr
Dim pic As Object
Dim strTempFile As String

hIcon = GetFileIconHandle(strFilePath, bolSmallIcon)
If hIcon = 0 Then Exit Sub

Set pic = IconHandleToPicture(hIcon)
If pic Is Nothing Then Exit Sub

strTempFile = CurrentProject.Path & "\icon.ico"
SavePicture pic, strTempFile

SaveIconToMSysResources strResourceName, "ICO",

On Error Resume Next
Kill strTempFile
On Error GoTo 0

End Sub

PubTlic Sub SaveFileIconToMSysResources(ByVal strFilePath As String, ByVal strResourceName As String, _

strTempFile

Listing 2: Die Funktion SaveFileIlconToMSysResources

www.vbentwickler.de/492

Seite 17

Access, SOL und VBA-PROGRAMMIERUNG
Cloud AUTOMATION VBA: EARLY BINDING UND LATE BINDING

VBA: Early Binding und Late Binding

Wenn wir Objektvariablen deklarieren und instanzieren wollen, gibt es zwei Varianten: Early Bin-
ding und Late Binding. Beide haben ihre Daseinsberechtigung. Bei der ersten konnen wir IntelliSen-
se nutzen, benotigen allerdings einen Verweis auf die jeweilige Bibliothek. Durch das Vorhanden-
sein des Verweises ist die Performance aulerdem ein wenig besser. Beim Late Binding deklarieren
wir die Variable mit dem Typ Object und weisen diese anders zu. Hier benotigen wir keinen Ver-
weis, was wiederum Vorteile mit sich bringt. Ferner konnen wir kein IntelliSense nutzen. In diesem
Artikel zeigen wir zuerst die Unterschiede und die Vor- und Nachteile von Early Binding und Late
Binding. Zudem stellen wir eine Moglichkeit vor, beide Varianten gleichzeitig zu definieren und zur
Laufzeit zwischen den Methoden zu wechseln.

In den meisten Fillen kommt man beim Pro- Verweise - Database X
grammieren mit den Elementen der stan-))
Verfiighare Verweise:
dardmiflig verfiigbaren Bibliotheken aus.
Welche d ind h ir im Ve . Di v| Visual Basic For Applications Abbrechen
€iche das sind, senen wir 1mm verweise-via- v| Microsoft Access 16.0 Object Library |
. . . v| OLE Automation
IOg des VBA—Pro]ekts einer frisch angelegten M4 Microsoft Office 16.0 Access database engine Objec] Durchsuchen...
. . Database
Access-Datenbank (siehe Bild 1). Micrasaft Office 16.0 Cbject Library ﬂ
Microzoft Visual Basic for Applications Extensibility 5..
The Google APIs Client Library is a runtime dient for Prioritit)
Wenn wir Elemente aus weiteren Bibliothe- The Google APIs Core Library contains the Google AF Hilfe
AccessCOMAddIn ﬂ
ken benotigen, fiigen wir diese Bibliotheken AccessibiityCplAdmin 1.0 Type Lbrary
roDs
am einfachsten zunachst iber den Verweise- Acrobat Access 3.0 Type Library
Arrohat Nistiller
Dialog hinzu. Wenn wir etwa mit ADODB
auf Daten Zugreifen wollen, benétigen wir die Microsoft Office 16.0 Access database engine Object Library
Bibliothek Microsoft ActiveX Data ObjeCtS Pfad: C:\Program Files (x86)\Comman Files\Microsoft Shared\OFFICE16Y
6.1 Library. Sprache: Voreinstellung
Danach konnen wir IntelliSense nutzen, um Bild 1: Standardmaflig aktivierte Verweise
nach Eingabe von ADODB und dem Punkt
. .. . All i ¢
die enthaltenen Elemente auszuwihlen (siche | [A"8emein :
. Cption Compare Database J
Bild 2). Cption Explicit !
L\s Public Sub BeispielADODE () !
Hierbei handelt es sich um das sogenannte Dim rst As ADODE.Recordset !
Dim cnn As ADCDS.con| 7
Early Binding. ¢ T |
Set rst = New Iga GonnecthodeEnum i
Set cnn = New @ conpectOptionEnum I
. End Sub f
Wir konnen auch ohne einen Verweis auf = g CennectPromptEnum
. . . . CopyRecordOptionsEnum
die Bibliothek arbeiten. Dazu entfernen wir &2 CursorLocationEnum i
.. . . . CursorOptionE p
zunachst den Verweis. Wenn wir dann mit & CursorOptionEnum -

dem Meniieintrag Debuggen|Kompilieren : : :
Bild 2: Deklaration per IntelliSense

Seite 22 www.vbentwickler.de/494

VBA-PROGRAMMIERUNG

VBA: EARLY BINDING UND LATE BINDING

Access, SOL und

Cloud AUTOMATION

das Projekt kompilieren, erhalten wir
einige fehlerhafte Stellen, da die de-
klarierten Typen nicht mehr gefunden
werden konnen (siehe Bild 3).

Diese missen wir nun zunichst durch

(Allgemein)

Cption Compare Database
Cption Explicit

Public Sub BeispielRDODE ()
il rst As ADCDB.Recordset
Dim cnn As ADODE.con

Set rst = New ADODE.Recordset
Set cnn = New ADODB.Connection
End Sub

Microsoft Visual Basic for Applications

| Fehler beim Kompilieren:

' Benutzerdefinierter Typ nicht definiert f

den Typ Object ersetzen:

Dim rst As Object

Hilfe

F T Py

Dim cnn As Object

Beim erneuten Kompilieren werden
auch die Zeilen zur Initialisierung der Variablen mit
New als fehlerhaft markiert.

Diese ersetzen wir durch den Aufruf der CreateOb-
ject-Anweisung:

Set rst = CreateObject("ADODB.Recordset")
Set cnn = CreateObject("ADODB.Connection")

Damit erhalten wir das sogenannte Late Binding und
der Code kann nun ebenfalls kompiliert werden.

Der Nachteil hierbei ist, dass wir kein Intellisense
mehr zum Programmieren mit diesen Elementen nut-
zen konnen.

Vorteil: Wir konnen auf nicht
vorhandene Bibliotheken

Bild 3: Fehler bei nicht auffindbaren Typen

re Meldungen, mit denen der Benutzer normalerwei-
se nicht viel anfangen kann - er wird sich dann beim
Entwickler melden und damit zusétzlichen Aufwand
verursachen.

Wenn wir hier mit Late Binding arbeiten, erscheint erst
einmal keine solche Meldung - auch beim Kompilie-
ren/Debuggen wird keine Fehlermeldung auftreten.

Wir konnen aus einer solchen Datenbank also sogar
eine .accde-Datei erstellen.

Und es wird noch besser: Statt der nicht behandelba-
ren Fehlermeldung, die bei fehlerhaften Verweisen bei
Early Binding auftaucht, konnen wir das Vorhanden-
sein der notwendigen Bibliotheken explizit testen und

reagieren

Der Vorteil tritt erst zutage, wenn wir

die Anwendung auf einem Rechner o

®

ausfiihren, auf dem die verwendete Bi-
bliothek nicht vorhanden ist. Wenn wir
eine Anwendung mit einem Verweis
auf eine nicht vorhandene Bibliothek
auf einem solchen Rechner offnen, er-

halten wir eine Meldung wie die aus

Onlinebanking mit Access 2025 André Minhorst

Ihre Onlinebanking mit Access 2025 André Minhorst-Datenbank oder lhr Projekt
enthilt einen fehlenden oder falschen Verweis auf die Datei 'ddBAC.dIl' Yersion

* Sie missen den Verweis korrigieren, um sicherzustellen, dass die
Datenbank oder das Projekt ardnungsgernal funktionsfahig ist.

=

Bild 4. In der Folge erhalten wir weite-

Bild 4: Meldung bei nicht vorhandener Bibliothek

www.vbentwickler.de/494

Seite 23

Access, SOL und VBA-PROGRAMMIERUNG
Cloud AUTOMATION VBA: EARLY BINDING UND LATE BINDING

den Benutzer darauf auf-
merksam machen, dass
diese gegebenenfalls noch
installiert werden mis-

sen. e . RegSwr32

DlIRegisterServer in
ChlUsers\User\Dropbox\Daten\Business'Projekte’\Fachmagazin
e\Datenbankentwickler\2025\06\WEBAEarlyBindingUndLateBind
ing\Build\MyTestLibraryPraject_win32.dll erfolgreich

len eine selbst erstellte durchgefanrt.

Angenommen, wir wol-

DLL in einem VBA-Pro-

jekt nutzen, zum Bei-

spiel eine DLL namens
MyTestLibraryProject, Bild 6: Registrieren der Beispiel-DLL
die eine Klasse namens
MyTestLibrary zur Ver-
fiigung stellt. Set obj = New MyTestLibraryProject.MyTestLibrary
Debug.Print obj.MultiplyByTen(10)

Die DLL findest Du im Download zu diesem Artikel End Sub

im Ordner Build unter den folgenden Namen:

Der Aufruf der Prozedur liefert das gewiinschte Ergeb-

« Fir 32-Bit: MyTestLibraryProject_win32.dll nis, in diesem Fall 100.
« Fiir 64-Bit: MyTestLibraryProject_win64.dll Registrierung der DLL autheben
Nun schauen wir uns den Fall an, dass die DLL nicht
Um diese zu registrieren, verwendest Du in der Einga- ~ wie erwartet registriert ist. Dazu heben wir die Regist-
beaufforderung von Windows (als Administ-
rator gestartet) den folgenden Befehl: Verweise - Database %
Verfiighare Verweise:
regsvr32.exe "C:\...\Build\MyTestLibraryPro-
. . " | Visual Basic For Applications Abbrech
Ject_win32.dT1 v| Microsoft Access 16.0 Object Library I e

v OLE Automation

¥| Microsoft Office 16.0 Access database engine Object Durchsuchen...
In der Eingabeaufforderung sieht das wie in G Tesibraneroiect]
Database ﬂ

Bild 6 aus. Database
Microsoft ActiveX Data Objects 6. 1 Library Prioritét

Microsoft Office 16.0 Object Library Hilfe
. . L . . Microsoft Visual Basic for Applications Extensibility 5. +

Diese binden wir tiber den Verweise-Dialog The Google APTs Client Library is a runtime dient for \

.. The Google APIs Core Library contains the Google AF

wie in Bild 5 in das VBA-Projekt einer Da- AcressCOMAddIN

ArressihilitvCnladmin 1.0 Tvne |ikrary

tenbank ein. Danach konnen wir die einzige

Funktion dieser DLL wie folgt nutzen, wobei MyTestLibraryProject s

wir hier zunéchst EarlY Blndlng nutzen: Pfad: C:\UsersUser\Dropbox\Daten\Business \Projekte \Fachmagazing \Dz
Sprache: Voreinstellung

Public Sub TestLibrary()

Dim obj As MyTestLibraryProject.MyTestLibrary Bild 5: Einbinden einer Beispiel-DLL

Seite 24 www.vbentwickler.de/494

VBA-PROGRAMMIERUNG
VBA: BEDINGTE KOMPILIERUNG NUTZEN

Access, SOL und
Cloud AUTOMATION

VBA: Bedingte Kompilierung nutzen

In VBA-Projekten kann es vorkommen, dass Anweisungen nur in bestimmten Situationen kompi-
liert werden sollen. Das bekannteste Beispiel sind die Deklarationen von API-Funktionen, die je
nach VBA-Version mal in der 32-Bit- und mal in der 64-Bit-Variante bereitgestellt werden sollen.
Da die 64-Bit-Version bei Verwendung von 32-Bit-Access unter Umstinden Datentypen mit sich
bringt, die es in der 32-Bit-Version nicht gibt, wiirde dies beim Kompilieren zu Fehlern fiihren. Da-
her gibt es die sogenannte bedingte Kompilierung, bei der man mit speziellen If...Then-Bedingun-
gen dafiir sorgen kann, dass nur die fiir die aktuelle Version relevanten Codezeilen kompiliert wer-
den konnen. In diesem Artikel zeigen wir, wie die bedingte Kompilierung funktioniert. Auflerdem
stellen wir ein weiteres Beispiel vor, in dem wir entweder die Early Binding- oder die Late Binding-
Verwendung von Variablen nutzen wollen - abhingig von einer zur Laufzeit gesetzten Bedingung.

Bedingte Kompilierung

Die bedingte Kompilierung arbeitet mit If...Then-Be-
dingungen, die mit einem vorangestellten Raute-Zei-
chen angelegt werden:

#If VBA7 Then

'API-Deklarationen fir VBA7

#E1se

'API-Deklarationen fir dltere VBA-Version
#End If

Hier haben wir bereits die erste von einigen wenigen
eingebauten Kompilierungskonstanten verwendet,
namlich VBA7. Diese hat den Wert True, wenn VBA
in der Version 7 verwendet wird. Den Wert dieser
Konstanten kénnen wir nur in einer mit dem Raute-
Zeichen beginnenden Zeile auslesen, sie kann nicht
einfach mit Debug.Print ermittelt werden. Die folgen-
de Anweisung liefert kein Ergebnis:

Debug.Print VBA7
Wir konnen aber eine Prozedur schreiben, in der wir

per #If...#Then-Bedingung priifen, ob VBA7 den Wert
True oder False hat:

Public Sub IsVBA7()
#If VBA7 Then
Debug.Print "VBA7"
#E1se
Debug.Print "Alteres VBA"
#End If
End Sub

Dies liefert fur aktuelle Office-Versionen (ab Version
2010) den Wert VBA?7.

32-Bit oder 64-Bit?
Auf die gleiche Weise kénnen wir herausfinden, ob
die aktuelle Office-Version in der 32-Bit- oder in der
64-Bit-Version vorliegt.

Hier verwenden wir die Kompilierungskonstante Win64:

PubTic Sub Is320r64Bit()
#If Win64 Then
Debug.Print "64-Bit"
#E1se
Debug.Print "32-Bit"
#End If
End Sub

Seite 28

www.vbentwickler.de/496

VBA-PROGRAMMIERUNG
VBA: BEDINGTE KOMPILIERUNG NUTZEN

Access, SOL und

Cloud AUTOMATION

Wir kénnen auch explizit auf die 32-Bit-Version priifen:

#If Win32 Then
Debug.Print "32-Bit"
#1se
Debug.Print "64-Bit"
#nd If

Bedingte Kompilierung mit
benutzerdefinierten Konstanten

Wir konnen auch eigene Kompilierungskonstanten
definieren und diese per #If...#Then-Bedingung ab-
fragen.

Diese Konstanten miissen ohne Datentyp angegeben
werden und werden ebenfalls mit fithrenden Raute-
Zeichen definiert, zum Beispiel:

#Const cEarlyBinding = -1

Die Konstanten diirfen auflerdem nur Long-Werte
enthalten.

Diese fragen wir dann wie folgt ab:

PubTic Sub EigeneKonstante()
#If cEarlyBinding = -1 Then

Debug.Print "cEarlyBinding ist True"
#1se

Debug.Print "cEarlyBinding ist False"
#nd If
End Sub

Bedingte Kompilierung fiir Early Binding
und Late Binding

Wenn wir auf dem Entwicklungsrechner mit Early
Binding arbeiten wollen, um IntelliSense nutzen zu
konnen, aber auf dem Produktivrechner sicherstellen
wollen, dass das Projekt auch ohne Vorhandensein der
jeweiligen Bibliothek zumindest ohne Kompilierfehler
verwendet werden kann, konnen wir hier die Anwei-

sungen zum Deklarieren und Initialisieren von Ob-
jektvariablen einfligen:

Public Sub EarlyBinding()
#If cEarlyBinding = -1 Then
Dim rst As adodb.Recordset
Set rst = New adodb.Recordset
#E1se
Dim rst As Object
Set rst = CreateObject("ADODB.Recordset")
#End If
End Sub

Wenn wir #cEarlyBinding auf -1 einstellen, werden
die Anweisungen im #If-Teil der Bedingung kompi-
liert und ausgefiihrt, andernfalls die aus dem #Else-
Teil. Das konnen wir leicht priifen, indem wir die An-
weisungen schrittweise durchlaufen.

Wenn wir die Konstante #cEarlyBinding auf den Wert
-1 einstellen und die Bibliothek Microsoft ActiveX
Data Objects x.y nicht per Verweis eingebunden ist,
erhalten wir auflerdem einen Kompilierfehler (siehe
Bild 1). Hier miissen wir also, solange wir auf dem

|IAIIgemeinl F

OCption Compare Database
Cption Explicit

$Const cEarlyBinding = -1 T

Public Sub EarlyBinding/()
#If cEarlyBinding = -1 Then
bl rst As adodbk.Recordset -
Set rst = New adodb.Recordset T
$Else /
Dim rst &As Chject
Set rst = CreatefCbject ("ADODB.Recordset™)
#End If
End Sub

Microsoft Visual Basic for Applications *

| Fehler beim Kompilieren:

= Benutzerdefinierter Typ nicht definiert

Hilfe

e B e v -

Bild 1: Kompilierfehler, weil die ADODB-Bibliothek fehlt

www.vbentwickler.de/496

Seite 29

Access, SOL und VBA-EDITOR PROGRAMMIEREN
Cloud AUTOMATION PER VBA VON EARLY BINDING ZU LATE BINDING WECHSELN

Per VBA von Early Binding zu Late Binding wechseln

Im Artikel »VBA: Early Binding und Late Binding« (www.vbentwickler.de/494) haben wir die bei-
den Methoden Early Binding und Late Binding vorgestellt und ihre Vor- und Nachteile beschrieben.

Im vorliegenden Artikel zeigen wir nun eine automatische Losung, um schnell einige oder alle per
Early Binding definierten Elemente nach Late Binding zu migrieren. Dazu nutzen wir Code, der
zunichst alle Early Binding-Elemente ermittelt, diese in einem Formular anzeigt und es dann er-
maoglicht, diese in Late Binding-Elemente umzuwandeln.

Die Losung aus diesem Artikel soll es erméglichen, gewandelt - und zwar in allen Modulen, die im oberen
alle Module der aktuellen Datenbank aus einem Lis- Listenfeld markiert sind.

tenfeld auszuwihlen und alle dort

in Deklarationszeilen vorhandenen == frmEariyBindingTol ateBinding - O X
Klassen, Typen und Enumeratio- |suche: ' Alle auswahlen
nen einzulesen. Module: MDL_AMV _Filedialog

MDL_AMV_Pictures
MDL_AMV_Registry

mdladdin

Enumerationen nicht, da wir diese mdlAddinProcedures
mdIBeispielEarlyBindingToLateBinding
mdlKontextmenues

Wir benétigen zwar die Typen und

nicht nach Late Binding migrie-
ren konnen, aber aus technischen

Grinden konnen wir diese nicht mdIVeonEarlyBindingZuLateBinding
mdlZwischenablage

ohne erheblichen Aufwand aus der

Typen einlesen

Ermittlung ausschlieflen.

Markieren: il alle auswahlen

Das Formular zur Steuerung dieses
Typen: ADODB.Connection

Vorgangs sehen wir in Bild 1. Hier
ADODB.Recordset

haben wir das Modul mdlTest aus-
gewdhlt und anschlieflend auf die
Schaltfliche Typen einlesen ge-
klickt, um alle dort enthaltenen Ty- Ly
pen zu ermitteln und in einem wei-
teren Listenfeld anzuzeigen.

Wenn wir nun einen oder mehrere
dieser Eintrdge markieren und auf
die Schaltfliche Early Binding er-
setzen klicken, werden die als Early
Binding deklarierten Elemente samt

der zur InltlahSlerung verwendeten C:) Early Binding ersetzen | (J Ersetzte Zeilen als Kommentar behalten

Anweisungen in Late Binding um-

Bild 1: Formular zum Steuern der Migration nach Late Binding

Seite 32 www.vbentwickler.de/495

VBA-EDITOR PROGRAMMIEREN Access, SOL und
PER VBA VON EARLY BINDING ZU LATE BINDING WECHSELN Cloud AUTOMATION

Zusitzlich finden wir dort
noch ein Kontrollkast-
chen namens Ersetzte
Zeilen als Kommentar
behalten. Damit konnen
wir festlegen, dass die
Early Binding-Anweisun-
gen nicht geloscht, son-
dern lediglich auskom-
mentiert werden.

Im Beispielmodul mdl-
Test haben wir einige mit
Early Binding versehene
Anweisungen unterge-
bracht - und zwar in den
unterschiedlichsten Aus-
pragungen:

e als einfache Deklara-
tionszeilen,

o als Parameter von Pro-
zeduren,

« als Deklaration in Pro-
zeduren,

o als Riickgabewert von
Prozeduren und

e mit und ohne Zei-
lenumbriiche (siehe
Bild 2).

Nachdem wir die beiden
Typen ADODB.Connec-
tion und ADODB.Re-

| (Aligemein)

Cption Compare Database
Cption Explicit

Puklic rstl As ADCDE.Recordset
Dim rst2 As ADODS.Recordset

B T Ay, |

Puklic Suk TestParameter (rst As ADCDE.Recordset)

End Sub

Public Sub TestParameterOptional (Cptional rst As ADODB.Recordset)

End Sub

Puklic Suk TestParametexrByVal (ByVal rst As ADODB.Recordset)

End Sub

Public Sub TestParameterByRef (ByRef rst As ADODB.Recordset)

End Sub

y
End Sub J

B e ——— P B e e B —

Bild 2: Beispielanweisungen mit Early Binding

||AIIgemein} 1
Option Compare Database ﬁ
Option Explicit ;
'Public rstl As ADODB.Recordset ;
Public rstl As Cbject H
'Dim rst2 As ADCDB.Recordset F
Dim rst2 As Ohject !

I
M
'"Public Subk TestParameter (rst As ADCDB.Recordset) 1
Puklic Subk TestParameter (rst As Ckject) I
i
End Sub ;
[}
|
'"Puklic Sub TestParameterOptional (Cptional rst As ADCDB.Recordset) !
Puklic Suk TestParameterOptional (Cptiomal rst As Cbhject) i
-
End Sub b
¢
'"Public Sub TestParameterByVal (ByVal rst As ADODB.Recordset) i
Public Sub TestParameterByVal (ByVal rst As Object) J
.I
End Sub !
1
¥
'"Public Sub TestParameterByRef (ByRef rst As ADODBE.Recordset) H
Puklic Sub TestParameterByRef (ByRef rst As Chkject) i
I
End Sub |
{
'Public Sub TestParammeterOptionalDefault (Cptional rst As ADCDB.Recordset = Nothingjf
Puklic Sulk TestParammeterCOptionalDefault (Cptional rst As Ckhject = HNothing) f
4
End Sub J

PO Y S A o ——— T e F s P T s S T O e i e ——

Bild 3: Beispielanweisungen mit Late Binding und auskommentierter Early Binding-Version

cordset mit unserem Formular umgestellt haben, sieht Beschreibung des Formulars
der abgebildete Ausschnitt des Moduls wie in Bild 3 ~ Im Formular finden wir in der Entwurfsansicht die fol-

aus.

genden Steuerelemente (siehe Bild 4):

www.vbentwickler.de/495

Seite 33

Access, SOL und
Cloud AUTOMATION

VBA-EDITOR PROGRAMMIEREN

PER VBA VON EARLY BINDING ZU LATE BINDING WECHSELN

o txtSucheModule: Er-

E frmEarlyBindingTolateBinding

O s

laubt das schnelle Fil- .

N R R KR R

Detailbereich

- KRN RN RN KK SIS - - KR P R

tern der im Listenfeld

[l
| potte]

IstModule angezeigten
Module.

Markiert
alle Eintrdge im Listen- | «
feld IstModules.

2
o Schaltfliche cmdAlle- z
Auswahlen: ?i

o Listenfeld 1stModules: 5
Zeigt die gefundenen

My

Module an, die den je- ?_
weiligen Typ enthalten. 8
:

o Schaltflache
penEinlesen: Liest alle

cmdTy- :

Typen der markierten
Module ein und zeigt .
diese
IstTypes an.

im Listenfeld

o Textfeld txtSucheTy-
pen: Filtert das Listen-
feld IstTypes nach dem -
eingegebenen Suchbe-
griff.

e Schaltfliche cmdAl-

Ungebunden

Ungebunden

Typen einlesen

- ||Markieren: | |Ungebunden

Ungebunden

dp Early Binding ersetzen H|Erse12'te Zeilen als Kommentar behalten

(Bl Alle auswihlen

i Alle auswiahlen

leTypenAuswaehlen:

kL __]

Markiert alle Eintrage
des Listenfeldes IstTy-

pes.

o Listenfeld IstTypes: Zeigt alle gefundenen Typen in
den markierten Modulen an.

o Schaltfliche cmdEarlyBindingErsetzen: Ersetzt fiir
alle markierten Typen in den markierten Modulen
Early Binding durch Late Binding.

Bild 4: Das Formular frmEarlyBindingToLateBinding in der Entwurfsansicht

o Kontrollkistchen chkErsetzeZeilenAlsKommen-
tarBehalten: Gibt an, ob die ersetzten Zeilen aus-
kommentiert oder einfach ersetzt werden sollen.

Ereignis beim Laden des Formulars

Beim Laden des Formulars wird das Ereignis aus Lis-
ting 1 ausgelost. Es referenziert die aktuelle Datenbank

Seite 34

www.vbentwickler.de/495

VBA-EDITOR PROGRAMMIEREN

PER VBA VON EARLY BINDING ZU LATE BINDING WECHSELN

Access, SOL und

Cloud AUTOMATION

Private Sub Form Load()
Dim db As DAO.Database
Dim objVBProject As VBIDE.VBProject
Dim objVBComponent As VBIDE.VBComponent

Set db = CodeDb
db.Execute "DELETE * FROM tbIModules", dbFailOnError
db.Execute "DELETE * FROM tb1Types", dbFailOnError

Set objVBProject = CurrentVBProject
For Each objVBComponent In objVBProject.VBComponents

Next objVBComponent

Me.TstModules.Requery
Me.1stTypes.Requery

If Not IsNull(Me.OpenArgs) Then
Dim i As Integer
Dim strVBComponent As String
strVBComponent = Me.OpenArgs
For i = 0 To Me.lstModules.ListCount - 1

Me.1stModules.Selected(i) = True
Call cmdTypenEinlesen Click
End If
Next i
End If
End Sub

db.Execute "INSERT INTO tbIModules(Modul) VALUES('" & objVBComponent.name & "')", dbFailOnError

If Me.1stModules.Column(l, i) = strVBComponent Then

Listing 1: Ereignisprozedur, die beim Laden des Formulars ausgelost wird

mit der CodeDb-Funktion (dies ist eine Vorbereitung,
um die Losung als Add-In zu nutzen). Dann 16scht
es die beiden Tabellen tbiModules und tblTypes, in
denen wir die ermittelten Daten speichern, um sie in
den Listenfeldern anzuzeigen. tbIModules enthélt das
Primiérschliisselfeld ModulID und das Textfeld Mo-
dul. Die Tabelle tblTypes enthélt die beiden Felder
TypelD und Type sowie Line und LineNumber, um
jeweils eine Zeile zu speichern, in der dieser Typ auf-
tritt (diese wurden eher zu Testzwecken wéhrend der
Programmierung der Losung genutzt).

Danach holen wir mit der Funktion CurrentVBPro-
ject einen Verweis auf das VBA-Projekt der aktuellen

Datenbank. Dies ist notwendig, da beim Vorhanden-
sein von Access-Add-Ins oder eingebundenen Biblio-
theksdatenbanken sonst gegebenenfalls das falsche
VBA-Projekt verwendet wird. Die Funktion Cur-
rentVBProject sieht wie folgt aus:

PubTic Function CurrentVBProject() As VBIDE.VBProject
Dim objVBProject As VBIDE.VBProject
For Each objVBProject In VBE.VBProjects
If objVBProject.FileName = CurrentDb.Name Then
Set CurrentVBProject = objVBProject
Exit Function
End If
Next objVBProject

www.vbentwickler.de/495

Seite 35

Access, SOL und

Cloud AUTOMATION

VBA-EDITOR PROGRAMMIEREN

PER VBA VON EARLY BINDING ZU LATE BINDING WECHSELN

End Function

Sie durchlauft alle vorhandenen VB-Projekte und
priift, ob der Pfad dem Pfad der aktuell ge6ffneten Ac-
cess-Datenbank entspricht. Ist das der Fall, wird der
Verweis auf dieses VB-Projekt zuriickgegeben.

Fiir die Verwendung dieser und anderer nachfolgend
genutzter Elemente, die auf den VBA-Editor und seine
Module zugreifen, fiigen wir dem VBA-Projekt einen
Verweis auf die Bibliothek Microsoft Visual Basic for
Applications Extensibility 5.3 Object Library hinzu.

Die Prozedur Form_Load durchliauft nun alle Elemen-
te der Auflistung VBComponents, was den Modulen
entspricht. Fiir jedes Modul wird ein Eintrag in der
Tabelle tbiIModules angelegt. Danach werden die bei-
den Listenfelder IstModules und IstTypes aktualisiert,
damit sie den aktuellen Inhalt der beiden Tabellen
tblModules und tblTypes anzeigen.

Schliefllich haben wir noch den Fall vorbereitet, dass
das Formular direkt fiir ein bestimmtes Modul aufge-
rufen wird. Dann wiirden wir das Argument OpenArgs
mit dem Namen des gewiinschten Moduls fiillen. Dies
wird dann direkt im Listenfeld IstModules markiert.

Der Aufruf des Formulars fiir diesen Fall sieht wie folgt
aus:

DoCmd.OpenForm "frmEarlyBindingToLateBinding”,
OpenArgs:="md1Test"

Auswihlen aller Module

Um alle Module auszuwiéhlen, klicken wir auf die
Schaltfliche cmdAlleTypenAuswaehlen. Diese durch-
lduft alle Elemente des Listenfeldes und stellt die Eigen-
schaft Selected fiir den jeweiligen Index auf True ein:

Private Sub cmdAlleTypenAuswaehlen Click()
Dim Tngltem As Long

For Tngltem = 0 To Me.lstTypes.ListCount - 1
Me.1stTypes.Selected(Tngltem) = True
Next Tngltem
End Sub

Einlesen der Typen der markierten
Module

Ein Klick auf die Schaltfliche cmdTypenEinlesen soll
alle Typen der markierten Module ermitteln und in die
Tabelle tblTypes schreiben.

Dazu referenziert sie wieder die Datenbank mit dem
Formular und leert die Tabelle tblTypes. Dann priift
sie, ob tiberhaupt Eintrage im Listenfeld 1stModules
markiert sind, und weist darauf hin, falls das nicht der
Fall ist.

Danach durchlduft sie alle markierten Eintrige des
Listenfeldes IstModules iiber die ItemsSelected-Auf-
listung und ermittelt mit Column(1, var) den Namen
des jeweiligen Moduls. Innerhalb der Schleife ruft sie
fiir jedes dieser Elemente die Prozedur TypesToTa-
ble auf und iibergibt dieser den Namen des Moduls.
Schliefilich aktualisiert sie die Liste der Typen.

Private Sub cmdTypenEinlesen Click()
Dim var As Variant
Dim strModule As String
Dim db As DAO.Database

Set db = CodeDb
DoCmd.Hourglass True
db.Execute "DELETE * FROM tb1Types", dbFailOnError

If Me.lstModules.ItemsSelected.Count = 0 Then
MsgBox "Markiere die zu untersuchenden Module.",
vbOKONnly + vbExclamation, "Kein Modul markiert"
Exit Sub
End If

For Each var In Me.lstModules.ItemsSelected

Seite 36

www.vbentwickler.de/495

VBA-EDITOR PROGRAMMIEREN

PER VBA VON EARLY BINDING ZU LATE BINDING WECHSELN

Access, SOL und

Cloud AUTOMATION

strModule = Me.lstModules.Column(1l, var)

Call TypesToTable(strModule)
Next var
Me.1stTypes.Requery
DoCmd.Hourglass False
End Sub

Auslesen der Typen eines Moduls

Die Prozedur TypesToTable referenziert wieder die
Code-Datenbank und das aktuelle VBA-Projekt (siehe
Listing 2).

Danach fillt sie die Variable objVBComponent mit
einem Verweis auf das iibergebene Modul und holt
einen weiteren Verweis auf das enthaltene CodeMo-
dule-Objekt, das in objCodeModule landet.

Dann durchliuft sie in einer For...Next-Schleife alle
Codezeilen, wobei die letzte Zeile mit der Eigenschaft
CountOfLines ermittelt wird.

Hier speichert sie die Originalzeile in strLineOriginal
und in strLine die um fithrende und folgende Leerzei-
chen bereinigte Version der Zeile.

Fiir diese ruft sie nun die Funktion KommentarAb-
schneiden auf, die wir ebenfalls im Modul finden und
die alle am Ende der Zeile befindlichen Kommentare
aus strLine entfernt.

Eine weitere Funktion namens TextAusLiteralenEnt-
fernen leert eventuell in Anfithrungszeichen vorhan-
dene Texte. Aus der Zeile strText = "Beispieltext” wird

mwn

dann zum Beispiel strText =

Public Sub TypesToTable(strModule As String)
Dim db As DAO.Database
Dim objVBProject As VBIDE.VBProject
Dim objVBComponent As VBIDE.VBComponent
Dim objCodeModule As VBIDE.CodeModule
Dim strLine As String
Dim strProc As String
Dim TngProcType As Long
Dim TngProcBodyLine As Long
Dim strLineOriginal As String
Dim TngLine As Long
Dim TngProcline As Long

Set db = CodeDb

Set objVBProject = CurrentVBProject

Set objCodeModule = objVBComponent.CodeModule

For TngLine = 1 To objCodeModule.CountOfLines
strLineOriginal = objCodeModule.Lines(IngLine, 1)
strLine = Trim(strLineOriginal)
strLine = KommentarAbschneiden(strLine)
strLine = TextAusLiteralenEntfernen(strLine)

Set objVBComponent = objVBProject.VBComponents(strModule)

Listing 2: Einlesen der Typen (Teil 1)

www.vbentwickler.de/495

Seite 37

Access, SOL und SQL SERVER UND CO.
Cloud AUTOMATION SQL SERVER-DATENBANKEN VERGLEICHEN MIT VS.CODE

SQL Server-Datenbanken vergleichen mit VS.Code

Es gibt verschiedene Griinde, zwei Datenbanken miteinander zu vergleichen. Wenn uns zwei Ver-
sionen einer Datenbank vorliegen, unterscheiden diese sich gegebenenfalls und wir méchten her-
ausfinden, welche die aktuellere ist. Bei der Gelegenheit kann man auch gleich noch priifen, wel-
che Unterschiede zwischen den Datenbanken es iiberhaupt gibt. Damit erdffnen sich praktische
Maglichkeiten: So konnen wir etwa ein Skript erstellen lassen, welches die Unterschiede zwischen
zwei Versionen einer Datenbank aufzeigt. Damit erkennen wir nicht nur die Unterschiede selbst,
sondern konnen das Skript sogar nutzen, um die dltere der beiden Datenbanken auf den aktuellen
Stand bringen. Das ist hilfreich, wenn wir eine beim Kunden befindliche Datenbank aktualisieren
wollen. Wir erstellen dann einfach ein Skript mit den Unterschieden und fiihren es beim Kunden
aus, damit er die aktuellste Version der Datenbank erhilt. Fiir das Ermitteln der Unterschiede gibt
es verschiedene Werkzeuge, etwa die SQL Server-Tools fiir Visual Studio Code, die leichtgewichtige
Entwicklungsumgebung von Microsoft. In diesem Artikel zeigen wir, wie dieses installiert wird und
wie wir die SQL Server-Tools aktivieren und nutzen, um die Unterschiede zwischen zwei Datenban-
ken in einem Skript zusammenzustellen.

Visual Studio Code herunterladen und https://code. visual studio. con/

installieren

Als Erstes benétigen wir Visual Studio Code auf unse- ~ Nach dem Download kénnen wir Visual Studio Code
rem Rechner. Dieses laden wir von der folgenden Web- direkt installieren. Hier gibt es kaum Optionen - wir
seite herunter: konnen lediglich noch die Eintrige zum Offnen von

B~ BODBO O -
EXPLORER testsg Release Motes: 1.107.1 X
~ NO FOLDER OPENED
You have not yet opened a folder. November 2025 (version 1.107)

Open Folder
Show release notes after an update

Release date: December 10, 2025

instead.

Update 1.107.1: The update improves the a adds an ag

You can clone a repo orkflow tutorial, and addresses these issues. The key highlights include:

Clone Repository Age ions view defaults to side-by-side and remembers your toggle state.

3 s that require your input are now clearly marked.
earn more about how to use Git and

TS GGl AT Support for copying workspace changes when creating a background session.

Chat prompt is not cleared when creating a new session.

Tool calls in cloud sessions are now collapsed by default.

VS Code 1.107 introduces multi-agent orchestration - use GitHub Copilot and custom_ A 5

S OUTLINE together to accelerate and parallelize development.

> TIMELINE
> Mo

Bild 1: Visual Studio Code direkt nach dem Start

Seite 48 www.vbentwickler.de/472

SQL SERVER UND CO.

SQL SERVER-DATENBANKEN VERGLEICHEN MIT VS.CODE

Access, SOL und

Cloud AUTOMATION

Dateien mit Visual Stu-

dio Code fiir die verschie- BTENSIONS

denen Kontextmeniis von sql

Windows aktivieren. SalEzeEr =)

.. no M M m
SQL Server (mssql) v1.38.0

n and optimize schemas for and SQL
tabase in Fabric using a moc

@ This publisher has verified ownership of micros

@86M Y3 D 243ms

Design and optimize schemas for SQL Server, Azure ...

8 Microsoft h
Nach der Installation und SQL Bindings
dem Start prasentiert sich & Microsof
Visual Studio Code wie N SQL Database Projects
in Bild 1. M

Prettier SQL VSCode
MSSQL Extension
installieren

5S0L Formatter
Als Nichstes bendtigen e
wir die Erweiterung fir
die Arbeit mit SQL Ser-

ver-Datenbanken.

SQLTools

Dazu
aktivieren wir mit Strg +
Umschalt + X die Anzeige der Extensions. Hier geben
wir SQL als Suchbegriff ein und erhalten unter ande-
rem den Eintrag SQL Server (mssql) - siehe Bild 2.

Ein Klick auf die Schaltfldche Install fiigt diese Exten-
sion zu Visual Studio Code hinzu.

Verbindung zu den zu vergleichenden
Datenbanken herstellen

Nun benotigen wir zwei Verbindungen, jeweils eine
tir die beiden zu vergleichenden Datenbanken. Dazu

File Edit Selection View Go Run
EXTENSIONS: MARKETPLACE
sql
SQL Server (mssql)
- Design and optimize schemas for SQL Serv
= uMicmsoﬂ
. Add Data Bre
= SQL Bindings
(14 Er
(11

2N

SOL Database Projects

Aanage Trust

Add Function B

Activation time: 243ms

Restart Extensions Install

start extensions to complete the uninstallation of this
* s
n.
This extension is recommended based on the files you recently
opened.

v frd

Install

Install
*:

Instal
s

Install

D

Bild 2: Installieren der SQL Server-Erweiterung

betdtigen wir die Tastenkombination Strg + Um-
schalt + P und wihlen den Eintrag MS SQL: Add Con-
nection aus (siehe Bild 3).

Es erscheint ein Dialog, in dem wir die Verbindungs-
daten eingeben - den Namen des Servers, die Angabe,
ob wir dem Server-Zertifikat vertrauen wollen, die Au-
thentifizierungsmethode und bei SQL Server-Authen-
tifizierung die Benutzerdaten sowie den Namen der
Datenbank. Diesen lassen wir allerdings weg, denn wir
wollen nicht nur eine Verbindung zu einer einzelnen

Cid + Shift + C

ensions For Account
r Account

yoint at Address

Shit + At + H

Bild 3: Hinzufiigen einer Verbindung

www.vbentwickler.de/472

Seite 49

SQL SERVER UND CO.
SQL SERVER-DATENBANK VON ACCESS AUS UPDATEN

Access, SOL und
Cloud AUTOMATION

SQL Server-Datenbank von Access aus updaten

Wenn wir eine Access-Anwendung mit SQL Server-Frontend an einen Kunden ausgeliefert haben,
miissen wir sicherstellen, dass Updates problemlos funktionieren. Updates haben hier zwei Seiten:
Einerseits kann das Access-Frontend um neue Funktionen erweitert werden, andererseits konnen
diese Funktionen eine Anpassung der SQL Server-Datenbank erfordern. Das Aktualisieren der Ac-
cess-Datenbank erfolgt im einfachsten Fall durch einfaches Ersetzen der .accdb-Datei. Beim Ba-
ckend wird es ein wenig aufwendiger: Wir konnen es nicht einfach ersetzen, da die enthaltenen
Daten im laufenden Betrieb bearbeitet wurden. Hier gibt es nun zwei Wege: Wir lassen uns ein
Backup des Backends zukommen, aktualisieren es und spielen es anschlieend wieder ein. Wenn
die Anwendung bei mehreren Kunden verwendet wird, ist dies jedoch zu aufwendig. In diesem Fall
konnen wir das Backend aber auch automatisch durch entsprechenden Code in der neuen Version

des Frontends aktualisieren lassen. Wie das gelingt, zeigen wir in diesem Artikel.

Access-Entwickler wissen: Eine Access-Datenbank
ist niemals fertig. Kunden haben immer neue Anfor-
derungen, die umgesetzt werden miissen. Wenn die
Anforderungen auch die Tabellen der Datenbank be-
treffen, miissen wir bei einer Aktualisierung des Fron-
tends auch das Backend entsprechend erneuern, zum
Beispiel indem wir Tabellen hinzufiigen oder vorhan-
dene Tabellen um Felder erweitern.

Bei einer Kombination aus Access-Frontend und -Ba-
ckend ist es damit bereits getan. Wenn die Backend-
Datenbank jedoch eine SQL Server-Datenbank ist,
konnen noch weitere Anderungen hinzukommen:
Neue gespeicherte Views, gespeicherte Prozeduren,
Trigger oder Funktionen.

In den folgenden Abschnitten stellen wir die Voraus-
setzungen vor und zeigen auch, wie die Aktualisierung
beim Start der neuen Version des Frontends automatisch
durchgefiihrt werden kann, sodass die Anwendung di-
rekt danach wieder in Betrieb genommen werden kann.

Aktualisierung per SQL

Die Aktualisierung der Elemente einer Backend-Da-
tenbank geschieht beispielsweise beim Hinzufiigen

oder Andern des Tabellenentwurfs durch entsprechen-
de SQL-Skripte wie CREATE TABLE, ALTER TAB-
LE oder, wenn Tabellen geloscht werden sollen, auch
durch DROP TABLE. Indizes und andere Elemente
erstellen wir ebenfalls mit SQL-Anweisungen.

Bei einer reinen Access-Losung mit einem Access-
Backend kommt hier der zusitzliche Aufwand auf uns
zu, diese Aufrufe manuell zusammenstellen zu mis-
sen.

Es gibt keinen eingebauten Mechanismus, mit dem wir
beispielsweise die Unterschiede zwischen zwei Access-
Tabellen erfassen und in ein SQL-Skript gief3en kon-
nen.

Beim SQL Server haben wir es zumindest beim Erstel-
len vollstindig neuer Elemente etwas leichter, denn die
entsprechenden Skripte konnen wir uns im SQL Ser-
ver Management Studio generieren lassen.

Schwieriger wird es, wenn wir nur ein Feld oder einen
Index zu einer Tabelle hinzuftigen wollen - hier miis-
sen wir grundsitzlich erst einmal selbst das benétigte
Skript schreiben.

www.vbentwickler.de/491

Seite 53

Access, SOL und

Cloud AUTOMATION

SQL SERVER UND CO.

SQL SERVER-DATENBANK VON ACCESS AUS UPDATEN

Allerdings gibt es auch Tools, mit de-

nen man die Unterschiede zwischen

B Version

zwei Datenbankversionen ermitteln

kann.

Eines davon stellen wir im Artikel SQL
Server-Datenbanken vergleichen mit

amvDesktop20...0.tblVersion &

Spaltenname

N

Datentyp MNULL-Werte zulassen

VS.Code (www.vbentwickler.de/472)
vorgestellt — hier konnen wir zumin-
dest die Unterschiede zwischen zwei Versionen ermit-
teln und daraus die notwendigen Anweisungen ablei-

ten, zum Beispiel zum Ergénzen eines Feldes in einer
Tabelle.

Voraussetzungen fiir den Abgleich

Wenn wir eine neue Version des Frontends an die
Kunden verteilen und damit auch das Backend im
SQL Server aktualisieren wollen, benétigen wir einige
grundlegende Elemente.

Das erste ist eine Tabelle im Backend, in der wir die
aktuelle Version des Backends festhalten. Diese enthalt
lediglich das Feld Version mit

Bild 1: Versionstabelle im SQL Server

die Version erstellt wurde, Bemerkungen, das Ausfiih-
rungsdatum des Updates und den Status des Updates.

Die zweite Tabelle heifSt tblVersionsdetails (siche
Bild 3). Sie speichert die einzelnen Schritte, die zum
Aktualisieren auf die jeweilige Version notwendig sind.

Hier finden wir zunichst ein Fremdschliisselfeld na-
mens VersionID, mit der die Zuordnung zu der Ver-
sion aus der Tabelle tblVersionen hergestellt wird. Das
Feld SQL enthilt die auszufiihrende Anweisung, zum
Beispiel zum Anlegen oder Loschen einer Tabelle, zum
Hinzuftigen von Feldern oder Indizes oder auch zum

dem Datentyp integer, in dem

. . i EH tblVersionen — O *
wir die aktuelle Versionsnum- - -
Feldname Felddatentyp Beschreibung (optional) a
mer spelchern (51ehe Bild 1). % | versioniD AutoWert Primarschlisselfeld der Tabelle '
Version Zahl Nummer der Version
. . Versionsdatum Datum/Uhrzeit Datum der Version
Auflerdem benOtlgen wir noch Bemerkungen Langer Text Bemerkungen zur Version
zwei Tabellen im Access-Fron- AusgefuehrtAm Datum,Uhrzeit Datum der Ausfihrung des Updates
. . . Erfolgreich Ja/Mein Angabe, ob das Update erfolgreich war
tend, in denen wir die Informa- v
tionen zum Aktualisieren des Feldeigenschaften
Backends speichern. Allgemein Nachschlagen
Feldgroke Long Integer
Format
. . . Dezimalstellenanzeige Automatisch
Die erste heifst tblVersionen Eingabeformat
. . . . Eeschriftung
und Sleht m Entwurf wie 1n Standardwert 0 Ein Feldname kann bis zu &4 Zeichen lang
1 Giltigkeitsregel sein, einschlieBlich Leerzeichen, Dricken Sie
Blld 2 aus. GﬂltigkeitsmSIdung F1, um Hilfe zu Feldnamen zu erhalten.
Eingabe erforderlich Mein

Indiziert

Hier speichern wir grundlegen- Textausrichtung

de Informationen zur jeweiligen

Version, zum Beispiel die Versi-

Ja [Ohne Duplikate)
Standard

onsnummer, das Datum, an dem

Bild 2: Versionstabelle im Access-Frontend

Seite 54

www.vbentwickler.de/491

SQL SERVER UND CO.

SQL SERVER-DATENBANK VON ACCESS AUS UPDATEN

Access, SOL und

Cloud AUTOMATION

Anlegen von Views, ge- 1 tblVersionsdetails — O *
speicherten Prozeduren Feldname Felddatentyp Beschreibung (optional) a
. B | versionsdetaillD AutoWert Primarschlisselfeld der Tabelle .
oder Funktionen. Im Feld VersionlD Zahl Version, zu der dieses Detail gehért
ReihenfolgeID legen wir Beschreibung Langer Text Beschreibung der Aktualisierung
f . Ich h SaL Langer Text SAL-Anweisung, um die Aktualisierung auszufihren
est, in welcher Reihen- ReihenfolgelD Zahl Reihenfolge, in der die Schritte ausgefihrt werden
folge diese Schritte ausge- Ausgefuehrtam Datum/Uhrzeit Ausfiihrungsdatum des Updates far diesen Schritt
.. Erfolgreich JafNein Status des Updates
fihrt werden sollen. Fehlermeldung Kurzer Text Eventuelle Fehlermeldungen beim Update
v
Die tibrigen Felder dienen
. £% Indizes: thiVersionsdetails *
der Aufzeichnung der Er- Allgemein Nachschlagel o
. . Feldgrote T Indexname Feldname Sortierreihenfolge &
gebnlsse der Aktualisie- Format B primarykey VersionsdetaillD Aufsteigend
rung. Dezimalstellenanzeige | Ay UniqueKeyi VersionlD Aufsteigend
Eingabeformat ReihenfolgelD Aufsteigend
Beschriftung
. . Standardwert -
Sie nehmen den Zeit- Gultigkeitsregel Indexsigenschaften 2
. e Gualtigkeitsmeldung
punkt der Aktuahslerung, Eingabe erforderlich Mg |Primarschlissel Mein
: Indiziert Mg Eindeutig Ja w | Der Name fir diesen Index, Jeder Index kann bis
den Status und eine even- Textausrichtung st] [Nullwerte ignarieren |Nein zu 10 Felder verwenden.
tuelle Fehlermeldung auf,

damit diese beim Fehl-

schlagen einer Aktualisie-
rung ausgewertet werden
konnen.

Fiir die beiden Felder VersionID und ReihenfolgeID
haben wir einen zusammengesetzten, eindeutigen In-
dex erstellt, damit jede ReihenfolgeID nur einmal je
Version vorkommen kann.

Benutzeroberfliche zum Verwalten der
Versionsupdates

Die Daten dieser Tabellen wollen wir in einem Formu-
lar samt Unterformular verwalten.

Der Entwurf des Hauptformulars samt Unterformular
sieht wie in Bild 4 aus.

Das Hauptformular ist an die Tabelle tblVersionen ge-
bunden und zeigt alle Felder dieser Tabelle an. Das Un-
terformular verwendet eine Abfrage basierend auf der
Tabelle tblVersionsdetails als Datensatzquelle, welche
die enthaltenen Daten nach dem Feld ReihenfolgeID
filtert:

Bild 3: Tabelle der Versionsdetails

SELECT VersionsdetailID, VersionID, Beschreibung, SQL,
ReihenfolgelID, AusgefuehrtAm, Erfolgreich, Fehlermel-
dung FROM tb1Versionsdetails ORDER BY tbl1Versionsdetails.
ReihenfolgelD;

Damit das Unterformular nur die Datensitze anzeigt,
die zu dem im Hauptformular angezeigten Datensatz
gehoren, sind die Eigenschaften Verkniipfen von und
Verkniipfen nach des Unterformular-Steuerelements
jeweils mit dem Wert VersionID gefiillt.

Das Unterformular (siehe Bild 5) ist als Endlosformu-
lar ausgelegt.

Es enthélt neben den gebundenen Feldern noch zwei
Schaltflichen, die das Andern der Reihenfolge durch
Verschieben nach oben oder nach unten ermdglichen.

Im Hauptformular haben wir fiir das Unterformular-
Steuerelement das Ereignis Beim Hingehen definiert.

www.vbentwickler.de/491

Seite 55

Access, SOL und

Cloud AUTOMATION

SQL SERVER UND CO.

SQL SERVER-DATENBANK VON ACCESS AUS UPDATEN

B3 frmVersionen - o X

LR R R I I I I I I I I IR A A I T Y - RN A RN P - RE - PRI -~ SRS TR IRS-TRIN IS A AT T
Detailbereich

z |\."ersi0n-ID: | |\.l'ersi0nID |

n

; |\."ersi0nsdatum:| |Versi0nsdatum |

% Bemerkungen:| |Bemerkungen

3

4

z |Ausgefuhr‘t am: | |AusgefuehrtAm |

: 8E foigec]

- GEEEEEEEEﬁEﬂ

8; N R Y - R T E I R I A R R R 'R A R L RIS R FIIE- NR - SR PRI TR

7 # Detailbereich

-1l - [Beschreibung:| ReihenfolgelD:| |Reihen|

%_ 1: Beschreibung HSQL |Ausgefuehr‘tAm:||AusgefuehrtAm |0

|11 [E——] ™ -

ik | L

- =

P >

Bild 4: Haupt- und Unterformular zum Verwalten der Versionen und Versionsdetails

Hier priifen wir, ob das Hauptformular einen vorhan-
denen oder einen neuen, leeren Datensatz anzeigt.

Falls es sich um einen neuen, leeren Datensatz handelt,
soll eine Meldung angezeigt werden, damit zunachst
ein Datensatz im Hauptformular angelegt wird:

Private Sub sfmVersionen Enter()
If Me.NewRecord Then
MsgBox "Bitte lege zuerst eine Version an.”, _
vbOkOnly + vbExclamation, "Neue Version fehlt"

Me.Version.SetFocus

Ereignisse im Unterformular

Fir das Ereignis Beim Anzeigen des Unterformulars
haben wir die folgende Ereignisprozedur hinterlegt:

Private Sub Form Current()
Me.TimerInterval = 100

End Sub

Diese startet den Timer fur 100 Millisekunden, dann
wird die folgende Ereignisprozedur ausgelost:

Private Sub Form Timer()

End If Me.TimerInterval = 0
End Sub If Me.NewRecord Then
B3 sfmVersionen — (] >
] E T O I I I - T T - T I N - JEE N IEU BCHD |1 B NCHS | INCI B - R A T I A T R BN TR BRI - IR AR RN - IR R -/ FRN BT SR -

Detailbereich

_ || |Beschreibung: SQL:

|Reihenf0|geID: | |Reihen|

1 || |Beschreibung saL

[pusgefuehrtam: | [AusgefuehrtAm | o

o)

|Feh|erme|dung:| |Feh|erme|dung |

- v
L] >
Bild 5: Unterformular zum Verwalten der Versionsdetails

Seite 56 www.vbentwickler.de/491

SQL SERVER UND CO.

SQL SERVER-DATENBANK VON ACCESS AUS UPDATEN

Access, SOL und

Cloud AUTOMATION

Me.ReihenfolgeID.DefaultValue =
Nz(DMax("ReihenfolgeID", "tblVersionsdetails”,
"VersionID = " & Me.Parent.VersionID), 1)
End If
End Sub

Diese setzt TimerInterval wieder auf 0 und prift, ob
der Benutzer gerade einen neuen, leeren Datensatz ak-
tiviert hat.

In diesem Fall wird der Standardwert fiir das Feld Rei-
henfolgeID dieses Datensatzes auf den bisher hochs-

ten vergebenen Reihenfolge-Wert der Datensitze aus
tblVersionsdetails fiir die Version aus dem Hauptfor-
mular ermittelt und um eins erhoht.

Dies miissen wir verzogert machen, weil das Unterfor-
mular vor dem Hauptformular geladen wird und im
Hauptformular noch kein Datensatz ist, fiir den wir
die aktuell hochste vergebene ReihenfolgeID ermit-
teln konnen.

Nach 100 Millisekunden ist dies jedoch in der Regel
der Fall.

Private Sub cmdNachOben C1ick()
Dim db As dao.Database
Dim TngVersionID As Long
Dim TngReihenfolgeZielID As Long
Dim TngReihenfolgeAktuel1ID As Long
Dim TngAktuel1ID As Long
Dim TngZielID As Long

Set db = CurrentDb

IngVersionID = Me.Parent!VersionID

Call ReihenfolgeErneuern(db, TngVersionID)

IngReihenfolgeAktuel1ID = Me.ReihenfolgelID

& " AND ReihenfolgeID < " & Me!ReihenfolgelD), 0)
If Not TngReihenfolgeZielID = 0 Then

IngReihenfolgeZielID = Nz(DMax("ReihenfolgeID", "tblVersionsdetails", "VersionID = " & IngVersionID _

IngZielID = DLookup(“VersionsdetailID", "tblVersionsdetails”, "VersionID = " & IngVersionID _
& " AND ReihenfolgeID = " & 1ngReihenfolgeZiellD)
TngAktuel1ID = Me!VersionsdetailID

Call ReihenfolgeVertauschen(db, TngVersionID, TngAktuellID, TngZielID, TngReihenfolgeAktuellID, _
IngReihenfolgeZiellD)

Me.Requery
Else
MsgBox "Kann nicht nach oben verschoben werden.",
End If
End Sub

vbOKOnly + vbExclamation, "Kein Verschieben méglich"

Listing 1: Verschieben des aktuellen Versionsdetails nach oben

www.vbentwickler.de/491 Seite 57

