
MAGAZIN FÜR DIE PROGRAMMIERUNG VON MICROSOFT ACCESS,
SQL SERVER UND CLOUD-AUTOMATIONEN MIT VBA UND CO.

vbentwickler.de

AUSGABE 06/2025

Access, SQL und
Cloud AUTOMATION

IN DIESEM HEFT:

SEITE 53

SQL SERVER-DATENBANK
AKTUALISIEREN
Lerne, wir Du SQL Server-
Backends vom Frontend aus
automatisch aktualisierst.

ORDNER UND DATEIEN
IM FORMULAR
Zeige Ordner und Dateien in einem
ListView-Steuerelement in eine
Access-Formular an.

EARLY UND LATE BINDING
IM GRIFF
Lerne die Unterschiede zwischen
Early und Late Binding und die
Vor- und Nachteile kennen.

SEITE 4 SEITE 22

www.vbentwickler.de Seite 3

EDITORIAL

In Access, SQL und Cloud Automation werden wir uns
um alle Themen kümmern, die über das reine Program-
mieren von Access-Anwendungen hinausgehen. Dabei
behandeln wir die folgenden Schwerpunkte:

•	Access: Hier zeigen wir fortgeschrittene Techniken rund
um die Entwicklung von Access-Anwendungen. VBA-
Programmierung, Fehlerbehandlung, API-Programmie-
rung – alles, was über das reine Erstellen von Tabellen,
Abfragen, Formularen und Berichten hinausgeht.

•	SQL Server: Wir zeigen, wie man zum SQL Server mi-
griert, wie Access optimal mit SQL Server zusammen-
arbeitet und wie wir von Access aus performant auf
SQL Server-Datenbanken zugreifen können.

•	Cloud: Wer langfristig mit Access arbeiten möchte,
muss Kompatibilität zu den vielen verschiedenen
Cloud-Diensten und Saas-Lösungen herstellen und in
der Lage sein, diese von Access aus zu steuern und
Daten mit diesen auszutauschen. Genau darum küm-
mern wir uns, zum Beispiel durch Verwendung von VBA
und Rest APIs.

Und natürlich automatisieren wir alles rund um Microsoft
Access. Egal, ob mit reinem VBA innerhalb der Anwendung
oder durch COM-DLLs, mit denen wir Funktionalitäten in
Form von Bibliotheken bereitstellen oder durch COM-Add-
Ins, mit denen wir die Funktionen der Benutzeroberfläche
von Access oder dem VBA-Editor erweitern.

Alle aktuellen Artikel in unserer neuen
Lernplattform
Außerdem findest Du ab jetzt alle Artikel in unserer neuen,
modernen Lernplattform unter der folgenden Adresse:

https://minhorst.learningsuite.

io

Dafür musst Du Dich dort allerdings erst einmal regist-
rieren. Dein unschlagbarer Vorteil: Du brauchst Dich nur
einmal zu registrieren und Deine Zugangsdaten gelten von
da an für ein gesamtes Jahr.

Die Registrierung führst Du hier durch:

https://andreminhorst.de/anmeldung-an-learningsuite

Bitte gib dort neben Deinem Vornamen, Deinem Nachna-
men und Deiner E-Mail-Adresse den Benutzernamen und
das Kennwort an, dass Du auf Seite 2 dieses PDF-Doku-
ments findest. Danach bekommst Du eine Mail mit einem
Link, über den Du die Registrierung abschließen kannst.

Du findest in der Lernplattform übrigens auch ein Forum,
in dem Du Dich mit mir und anderen Lesern direkt aus-
tauschen kannst!

Achtung: vbentwickler.de bleibt erhalten!
Aus technischen Gründen findest Du die Artikel weiterhin
auf der Webseite https://www.vbentwickler.de.

Viel Spaß beim Erkunden der neuen Lernplattform!

Dein André Minhorst

Aus VB-Entwickler wird
Access, SQL und Cloud Automation
Um der Entwicklung in der Welt rund um VBA,VB, Access und den übrigen Office-

Anwendungen gerecht zu werden, haben wir den Titel dieses Magazins geändert

– und damit wird sich auch der Inhalt auf neue Schwerpunkte konzentrieren.

Access programmieren
Access: Ordner und Dateien im Formular anzeigen

www.vbentwickler.de/493Seite 4

Wenn wir Ordner und Dateien in einem List­
View-Steuerelement anzeigen wollen, haben
wir verschiedene Möglichkeiten, diese Ele-
mente einzulesen. Wir können diese in einer
Tabellenstruktur mit Tabellen für Verzeich-
nisse und Dateien speichern und diese Daten
in das ListView-Steuerelement einlesen oder
einfach die Daten direkt aus dem Verzeichnis
holen.

Da wir immer nur die Dateien aus einem
Verzeichnis anzeigen wollen und davon aus-
gehen, dass es sich dabei nicht um Hunderte
Elementen handelt, gehen wir den letzteren
Weg und lesen die Elemente einfach direkt aus dem
Dateisystem ein.

Wir benötigen also keine Tabellen, um die Elemen-
te zwischenzuspeichern, sondern holen diese immer
beim Anzeigen eines Datensatzes. So ist auch sicher-
gestellt, dass wir den aktuellen Dateibestand anzeigen.

Datenmodell der Anwendung
Daher fügen wir der Beispielanwendung nur die bei-
den Tabellen aus Bild 1 hinzu. Die Tabelle tblProdukte
enthält als wichtigste Information das Verzeichnis, in
dem sich die Dateien zum jeweiligen Produkt befin-
den.

Formular der Anwendung
Anschließend legen wir ein neues, leeres Formular na-
mens frmProdukte in der Entwurfsansicht an.

Diesem weisen wir über die Eigenschaft Datensatz-
quelle die Tabelle tblProdukte hinzu und ziehen alle
Felder dieser Tabelle aus der Feldliste in den Formular-
entwurf.

Die Felder ordnen wir anschließend wie in Bild 2 an.
Das Textfeld Verzeichnis versehen wir mit dem Na-
men txtVerzeichnis, außerdem fügen wir neben die-
sem eine Schaltfläche zum Auswählen des Verzeich-
nisses hinzu.

Access: Ordner und Dateien im Formular anzeigen
In Access-Anwendungen kann es interessant sein, Ordner und Dateien zu einem Datensatz verfüg-
bar zu machen. Das bietet sich an, wann immer Dateien im Kontext eines Datensatzes in einem
bestimmten Bereich im Dateisystem gespeichert sind – etwa zu Kunden, Projekten, Produkten
und anderen Tabellen. In diesem Artikel zeigen wir, wie man die Verzeichnisse und Dateien eines
Verzeichnisses über ein ListView-Steuerelement einfach in einem Formular anzeigen kann. Die
Standardfunktionen zu diesen Elementen sollen direkt über die Einträge dieses ListView-Steuer-
elements verfügbar sein – zum Beispiel das Öffnen in der jeweiligen Zielanwendung, das Löschen
einer Datei oder auch das Navigieren in unter- oder übergeordneten Verzeichnissen.

Bild 1:  Tabellen der Beispielanwendung

www.vbentwickler.de/493 Seite 5

Access programmieren
Access: Ordner und Dateien im Formular anzeigen

Für das Textfeld txtVerzeichnis stellen
wir die Eigenschaft Horizontaler An­
ker auf Beide ein, für die Schaltfläche
cmdOrdnerauswahl auf Rechts und
für das Bezeichnungsfeld des Textfel-
des auf Links. Dadurch vergrößert sich
das Textfeld, wenn wir die Breite des
Formulars vergrößern.

Ordner auswählen
Für die Schaltfläche hinterlegen wir die
Prozedur aus Listing 1.

Diese Prozedur prüft, ob bereits ein
Verzeichnis im Textfeld gespeichert
ist. Falls ja, wird es der Variablen strI­
nitialFolder zugewiesen, anderenfalls
erhält strInitialFolder den Pfad zur
aktuellen Datenbank (CurrentProject.
Path).

Danach ruft die Prozedur die Funktion
ChooseFolder auf und übergibt dieser
den Wert der Variablen strInitialFol­
der als Parameter.

Diese verwendet den eingebauten Office-
Dialog zum Auswählen von Verzeichnissen.
Dazu benötigen wir einen Verweis auf die Bi-
bliothek Microsoft Office 16.0 Object Libra­
ry, den wir über den Verweise-Dialog hinzu-
fügen (siehe Bild 3).

Die Funktion ChooseFolder deklariert eine
Objektvariable auf Basis der FileDialog-
Klasse und eine Variable zum Zwischenspei-
chern des gewählten Verzeichnisses (siehe
Listing 2).

Dann weisen wir der Variablen eine Instanz
der Klasse FileDialog zu und übergeben da-

Private Sub cmdOrdnerauswahl_Click()
 Dim strInitialFolder As String
 If Not Len(Nz(Me.txtVerzeichnis, 0)) = 0 Then
 strInitialFolder = CurrentProject.Path
 Else
 strInitialFolder = Me.txtVerzeichnis
 End If
 Me.txtVerzeichnis = ChooseFolder(strInitialFolder)
End Sub

Listing 1:  Prozedur zum Auswählen des Ordners für das aktuelle Produkt

Bild 2:  Das Formular frmProdukte

Bild 3:  Verweis auf die Office-Bibliothek

Access programmieren
Access: Ordner und Dateien im Formular anzeigen

www.vbentwickler.de/493Seite 6

bei den Parameter msoFileDialogFol­
derPicker. Dann tragen wir die Werte
für die Eigenschaften Title, ButtonNa­
me und InitialFilename ein und rufen
die Methode Show auf, um den Dialog
anzuzeigen.

Der Code stoppt an dieser Stelle, bis
der Benutzer ein Verzeichnis ausge-
wählt hat, und liest dann das gewähl-
te Verzeichnis aus. Dieses liefert die
Funktion schließlich als Ergebnis zu-
rück, sodass das gewählte Verzeichnis
von der aufrufenden Prozedur in das
Textfeld txtVerzeichnis eingetragen
werden kann.

ListView zur Anzeige der Ordner und
Dateien hinzufügen
Nun fügen wir unterhalb der bisher angelegten Steuer-
elemente ein ListView-Steuerelement ein. Dazu wählen
wir im Ribbon den Befehl Formularentwurf|Steuer­
elemente|ActiveX-Steuerelemente aus. Im folgenden
Dialog selektieren wir den Eintrag Microsoft List­
View Control, version 6.0 (siehe Bild 4), klicken auf
OK und passen anschließend die Größe des Steuerle-
ments so an, dass es die vollständige Formularbreite
einnimmt.

Für das ListView-Steuerelement legen wir den Namen
ctlListView fest.

ImageList zum Speichern von Icons
hinzufügen
Außerdem fügen wir auf dem gleichen Weg ein Image­
List-Steuerelement zum Formular hinzu und nennen
es ctlImageList.

Icons einlesen
Wir wollen im ListView-Steuerelement zunächst zwei
Spalten anzeigen. Die erste soll das Icon der Anwen-

dung enthalten, mit der die jeweilige Datei standard-
mäßig geöffnet wird, die zweite den Dateinamen.

Diese Bilder müssen wir allerdings erst einmal er-
mitteln. Am besten wäre es, wenn diese in der Tabelle
MSysResources landen, wo wir sie mit wenigen Code-
zeilen auslesen und dem ImageList-Steuerelement

Public Function ChooseFolder(strInitialFolder As String)
 Dim objFileDialog As Office.FileDialog
 Dim strTemp As String
 Set objFileDialog = Application.FileDialog(msoFileDialogFolderPicker)
 With objFileDialog
 .Title = "Verzeichnis auswählen"
 .ButtonName = "Auswählen"
 .InitialFilename = strInitialFolder
 If .Show = True Then
 strTemp = .SelectedItems(1)
 End If
 End With
 ChooseFolder = strTemp
End Function

Listing 2:  Funktion zum Auswählen eines Ordners

Bild 4:  ListView-Steuerelement hinzufügen

www.vbentwickler.de/493 Seite 7

Access programmieren
Access: Ordner und Dateien im Formular anzeigen

zuweisen können. Die größere Herausforde-
rung ist jedoch, die Bilder für die verschiede-
nen Dateitypen zu erhalten.

Wie das gelingt, haben wir in einem eigenen
Artikel namens VBA: Datei-Icons einlesen
und speichern (www.vbentwickler.de/492)
beschrieben.

Das Ergebnis der dort beschriebenen Techni-
ken ist eine Funktion namens SaveFileIcon­
ToMSysResources, der wir den Namen der
Datei, deren Icon wir erhalten wollen, und
einige weitere Informationen übergeben. Als
Ergebnis landen die gewünschten Dateien wie in Bild 5
in der Tabelle MSysResources.

Dateien in das ListView-Steuerelement
einlesen
Die Dateien sollen immer beim Anzeigen eines Daten-
satzes im Formular frmProdukte in das ListView-
Steuerelement geladen werden.

Deshalb füllen wir die Prozedur, die durch das Ereig-
nis Beim Anzeigen ausgelöst wird, mit dem Aufruf der
Funktion FillListView, die wir im Anschluss beschrei-
ben. Dieser Funktion übergeben wir den Pfad aus dem
Feld txtVerzeichnis:

Private Sub Form_Current()

 Call FillListView(Nz(Me.txtVerzeichnis, ""))

End Sub

Den ersten Teil der Funktion FillListView finden wir
in Listing 3. Nach dem Deklarationsteil referenzieren
wir das ListView- und das ImageList-Steuerelement
mit den Variablen objListView und objImageList.
Dabei greifen wir jeweils über die Object-Eigenschaft
auf das eigentliche ActiveX-Objekt zu, um mit allen
Eigenschaften und Methoden der MSComctl-Steuer-
elemente arbeiten zu können.

Dann schalten wir das Neuzeichnen des Formulars
aus, bis das ListView-Steuerelement vollständig gefüllt
ist. Für das ListView-Steuerelement nehmen wir an-
schließend einige grundlegende Einstellungen vor.

Diese könnte man teilweise auch direkt im Eigenschaf-
tenblatt des Steuerelements setzen. Da wir jedoch in
vielen Formularen identische Einstellungen benötigen,
haben wir uns angewöhnt, diese Konfiguration per
VBA vorzunehmen und bei Bedarf in andere Formu-
larmodule zu übernehmen.

Auf diese Weise behalten wir die vollständige Kontrol-
le über das Verhalten des ListViews im Code.

Bevor wir das ListView konfigurieren, führen wir eine
wichtige Initialisierung durch: Zunächst lösen wir eine
eventuell bestehende Zuordnung der ImageList zum
ListView, indem wir die Eigenschaft SmallIcons auf
Nothing setzen.

Anschließend leeren wir sowohl die vorhandenen Ein-
träge im ListView als auch die ListImages-Auflistung
der ImageList. Dieser Schritt ist entscheidend, da Än-
derungen an einer ImageList zur Laufzeit nur dann
stabil funktionieren, wenn sie nicht gleichzeitig von
einem ListView-Steuerelement verwendet wird.

Bild 5:  Die Tabelle mit den Datei-Icons

www.vbentwickler.de/492 Seite 15

VBA-Programmierung
VBA: Datei-Icons einlesen und speichern

Mit Bordmitteln von Access ist
das Ermitteln der Icon-Datei-
en nicht möglich. Stattdessen
ist ein gezielter Zugriff auf die
Windows-Shell erforderlich,
um Datei-Icons dynamisch zu
ermitteln und für die eigene
Benutzeroberfläche nutzbar zu
machen.

Genau hier setzt die in diesem
Artikel vorgestellte Technik
an: Mithilfe der Windows-API
lassen sich die systemweit re-
gistrierten Icons für beliebi-
ge Dateitypen auslesen, in ein
ImageList-Steuerelement über-
nehmen und anschließend in
verschiedenen Access-Steuer-
elementen einsetzen.

Der große Vorteil dieser Vorgehensweise liegt darin,
dass die Icons automatisch dem jeweils installierten Pro-
gramm entsprechen. PDF-Dateien, Word-Dokumente,
ZIP-Archive oder ausführbare Dateien werden genauso
dargestellt, wie der Benutzer sie aus dem Windows-Ex-
plorer kennt – also ohne zusätzliche Grafikdateien.

Der Artikel zeigt Schritt für Schritt, wie diese Technik
umgesetzt wird, wie sich Icons performant zwischen-
speichern lassen und an welchen Stellen einer Access-
Datenbank sie sinnvoll eingesetzt werden können.

Die Icons können wir etwa für die Anzeige von Datei-
en in einem ListView-Steuerelement in einem For-
mular nutzen (siehe Bild 1), wie wir es im Artikel

VBA: Datei-Icons einlesen und speichern
Symbole und Icons spielen in Microsoft-Access-Anwendungen eine oft unterschätzte Rolle. Dabei
können sie die Bedienbarkeit und Verständlichkeit einer Datenbank erheblich verbessern – ins-
besondere dann, wenn Dateien, Ordner oder Dokumenttypen visuell unterschieden werden sol-
len. Während Access für viele Steuerelemente wie TreeView, ListView, Symbolleisten oder Ribbon-
Schaltflächen grundsätzlich Icon-Unterstützung bietet, stellt sich in der Praxis häufig die Frage:
Wie lassen sich die echten System-Icons von Dateien – so wie sie auch im Windows-Explorer ange-
zeigt werden – in einer Access-Anwendung verwenden? Genau das zeigen wir in diesem Artikel und
liefern auch noch das Know-how, um die eingelesenen Icons direkt in der Tabelle MSysResources zu
speichern. Von dort können wir sie beispielsweise in ein ImageList-Steuerelement schreiben – um
sie dann in TreeView- und ListView-Steuerelementen anzuzeigen.

Bild 1:  Dateien mit Icons in einem ListView-Steuerelement

VBA-Programmierung
VBA: Datei-Icons einlesen und speichern

www.vbentwickler.de/492Seite 16

#If VBA7 Then
 Private Declare PtrSafe Function SHGetFileInfo Lib "shell32.dll" Alias "SHGetFileInfoW" (_
 ByVal pszPath As LongPtr, ByVal dwFileAttributes As Long, _
 psfi As SHFILEINFO, ByVal cbFileInfo As Long, _
 ByVal uFlags As Long) As LongPtr
#Else
 Private Declare Function SHGetFileInfo Lib "shell32.dll" Alias "SHGetFileInfoW" (_
 ByVal pszPath As Long, _
 ByVal dwFileAttributes As Long, _
 psfi As SHFILEINFO, _
 ByVal cbFileInfo As Long, _
 ByVal uFlags As Long) As Long
#End If

Private Declare PtrSafe Function OleCreatePictureIndirect Lib "oleaut32.dll" (_
 ByRef picDesc As PICTDESC, _
 ByRef RefIID As GUID, _
 ByVal fPictureOwnsHandle As Long, _
 ByRef IPic As Object) As Long

Private Type GUID
 Data1 As Long
 Data2 As Integer
 Data3 As Integer
 Data4(7) As Byte
End Type

Private Type PICTDESC
 cbSizeofStruct As Long
 picType As Long
 hImage As LongPtr
 xExt As Long
 yExt As Long
End Type

Private Type SHFILEINFO
 hIcon As LongPtr
 iIcon As Long
 dwAttributes As Long
 szDisplayName As String * 260
 szTypeName As String * 80
End Type

Private Const PICTYPE_ICON = 3
Private Const SHGFI_ICON = &H100
Private Const SHGFI_SMALLICON = &H1
Private Const SHGFI_LARGEICON = &H0
Private Const SHGFI_USEFILEATTRIBUTES = &H10
Private Const FILE_ATTRIBUTE_NORMAL = &H80

Listing 1:  API-Deklarationen

www.vbentwickler.de/492 Seite 17

VBA-Programmierung
VBA: Datei-Icons einlesen und speichern

Access: Ordner und Dateien im Formular anzeigen
(www.vbentwickler.de/493) vorstellen.

Vorbereitung: API-Funktionen und
-Deklarationen
Für die nachfolgend vorgestellten Techniken benö-
tigen wir als Erstes eine Reihe von API-Funktionen,
Konstanten und Typen.

Diese haben wir in Listing 1 zusammengestellt.

Speichern von Icon-Dateien in der Tabelle
MSysResources
Die Tabelle MSysResources speichert die für eine Ac-
cess-Anwendung notwendigen Ressourcen wie etwa
die Bilddateien, die in Formularen, Berichten und
Steuerelementen wie der Schaltfläche oder dem Bild-
Steuerelement angezeigt werden.

Dies ist der Platz, an dem wir auch die Icon-Dateien
speichern können. Diese können wir dann beispiels-
weise von dort in ein ImageList-Steuerelement über-
tragen, um sie von dort aus in einem TreeView- oder
ListView-Steuerelement anzuzeigen.

Funktion zum Speichern von Icon-Dateien
Die Hauptfunktion heißt SaveFileIconToMSysRe­
sources und erwartet drei Parameter:

•	 strFilePath: Pfad der Datei, dessen Icon wir spei-
chern wollen

•	 strResourceName: Name, unter dem die Datei in
der Tabelle MSysResources gespeichert werden soll

•	 bolSmallIcon: Gibt an, ob ein kleines Icon gespei-
chert werden soll (16 x 16 Pixel)

Public Sub SaveFileIconToMSysResources(ByVal strFilePath As String, ByVal strResourceName As String, _
 Optional ByVal bolSmallIcon As Boolean = True)

 Dim hIcon As LongPtr
 Dim pic As Object
 Dim strTempFile As String

 hIcon = GetFileIconHandle(strFilePath, bolSmallIcon)
 If hIcon = 0 Then Exit Sub

 Set pic = IconHandleToPicture(hIcon)
 If pic Is Nothing Then Exit Sub

 strTempFile = CurrentProject.Path & "\icon.ico"
 SavePicture pic, strTempFile

 SaveIconToMSysResources strResourceName, "ICO", strTempFile

 On Error Resume Next
 Kill strTempFile
 On Error GoTo 0
End Sub

Listing 2:  Die Funktion SaveFileIconToMSysResources

VBA-Programmierung
VBA: Early Binding und Late Binding

www.vbentwickler.de/494Seite 22

In den meisten Fällen kommt man beim Pro-
grammieren mit den Elementen der stan-
dardmäßig verfügbaren Bibliotheken aus.
Welche das sind, sehen wir im Verweise-Dia-
log des VBA-Projekts einer frisch angelegten
Access-Datenbank (siehe Bild 1).

Wenn wir Elemente aus weiteren Bibliothe-
ken benötigen, fügen wir diese Bibliotheken
am einfachsten zunächst über den Verweise-
Dialog hinzu. Wenn wir etwa mit ADODB
auf Daten zugreifen wollen, benötigen wir die
Bibliothek Microsoft ActiveX Data Objects
6.1 Library.

Danach können wir IntelliSense nutzen, um
nach Eingabe von ADODB und dem Punkt
die enthaltenen Elemente auszuwählen (siehe
Bild 2).

Hierbei handelt es sich um das sogenannte
Early Binding.

Wir können auch ohne einen Verweis auf
die Bibliothek arbeiten. Dazu entfernen wir
zunächst den Verweis. Wenn wir dann mit
dem Menüeintrag Debuggen|Kompilieren

VBA: Early Binding und Late Binding
Wenn wir Objektvariablen deklarieren und instanzieren wollen, gibt es zwei Varianten: Early Bin-
ding und Late Binding. Beide haben ihre Daseinsberechtigung. Bei der ersten können wir IntelliSen-
se nutzen, benötigen allerdings einen Verweis auf die jeweilige Bibliothek. Durch das Vorhanden-
sein des Verweises ist die Performance außerdem ein wenig besser. Beim Late Binding deklarieren
wir die Variable mit dem Typ Object und weisen diese anders zu. Hier benötigen wir keinen Ver-
weis, was wiederum Vorteile mit sich bringt. Ferner können wir kein IntelliSense nutzen. In diesem
Artikel zeigen wir zuerst die Unterschiede und die Vor- und Nachteile von Early Binding und Late
Binding. Zudem stellen wir eine Möglichkeit vor, beide Varianten gleichzeitig zu definieren und zur
Laufzeit zwischen den Methoden zu wechseln.

Bild 1:  Standardmäßig aktivierte Verweise

Bild 2:  Deklaration per IntelliSense

www.vbentwickler.de/494 Seite 23

VBA-Programmierung
VBA: Early Binding und Late Binding

das Projekt kompilieren, erhalten wir
einige fehlerhafte Stellen, da die de-
klarierten Typen nicht mehr gefunden
werden können (siehe Bild 3).

Diese müssen wir nun zunächst durch
den Typ Object ersetzen:

Dim rst As Object

Dim cnn As Object

Beim erneuten Kompilieren werden
auch die Zeilen zur Initialisierung der Variablen mit
New als fehlerhaft markiert.

Diese ersetzen wir durch den Aufruf der CreateOb­
ject-Anweisung:

Set rst = CreateObject("ADODB.Recordset")

Set cnn = CreateObject("ADODB.Connection")

Damit erhalten wir das sogenannte Late Binding und
der Code kann nun ebenfalls kompiliert werden.

Der Nachteil hierbei ist, dass wir kein Intellisense
mehr zum Programmieren mit diesen Elementen nut-
zen können.

Vorteil: Wir können auf nicht
vorhandene Bibliotheken
reagieren

Der Vorteil tritt erst zutage, wenn wir
die Anwendung auf einem Rechner
ausführen, auf dem die verwendete Bi-
bliothek nicht vorhanden ist. Wenn wir
eine Anwendung mit einem Verweis
auf eine nicht vorhandene Bibliothek
auf einem solchen Rechner öffnen, er-
halten wir eine Meldung wie die aus
Bild 4. In der Folge erhalten wir weite-

re Meldungen, mit denen der Benutzer normalerwei-
se nicht viel anfangen kann – er wird sich dann beim
Entwickler melden und damit zusätzlichen Aufwand
verursachen.

Wenn wir hier mit Late Binding arbeiten, erscheint erst
einmal keine solche Meldung – auch beim Kompilie-
ren/Debuggen wird keine Fehlermeldung auftreten.

Wir können aus einer solchen Datenbank also sogar
eine .accde-Datei erstellen.

Und es wird noch besser: Statt der nicht behandelba-
ren Fehlermeldung, die bei fehlerhaften Verweisen bei
Early Binding auftaucht, können wir das Vorhanden-
sein der notwendigen Bibliotheken explizit testen und

Bild 3:  Fehler bei nicht auffindbaren Typen

Bild 4:  Meldung bei nicht vorhandener Bibliothek

VBA-Programmierung
VBA: Early Binding und Late Binding

www.vbentwickler.de/494Seite 24

den Benutzer darauf auf-
merksam machen, dass
diese gegebenenfalls noch
installiert werden müs-
sen.

Angenommen, wir wol-
len eine selbst erstellte
DLL in einem VBA-Pro-
jekt nutzen, zum Bei-
spiel eine DLL namens
MyTestLibraryProject,
die eine Klasse namens
MyTestLibrary zur Ver-
fügung stellt.

Die DLL findest Du im Download zu diesem Artikel
im Ordner Build unter den folgenden Namen:

•	 Für 32-Bit: MyTestLibraryProject_win32.dll

•	 Für 64-Bit: MyTestLibraryProject_win64.dll

Um diese zu registrieren, verwendest Du in der Einga-
beaufforderung von Windows (als Administ-
rator gestartet) den folgenden Befehl:

regsvr32.exe "C:\...\Build\MyTestLibraryPro-

ject_win32.dll"

In der Eingabeaufforderung sieht das wie in
Bild 6 aus.

Diese binden wir über den Verweise-Dialog
wie in Bild 5 in das VBA-Projekt einer Da-
tenbank ein. Danach können wir die einzige
Funktion dieser DLL wie folgt nutzen, wobei
wir hier zunächst Early Binding nutzen:

Public Sub TestLibrary()

 Dim obj As MyTestLibraryProject.MyTestLibrary

 Set obj = New MyTestLibraryProject.MyTestLibrary

 Debug.Print obj.MultiplyByTen(10)

End Sub

Der Aufruf der Prozedur liefert das gewünschte Ergeb-
nis, in diesem Fall 100.

Registrierung der DLL aufheben
Nun schauen wir uns den Fall an, dass die DLL nicht
wie erwartet registriert ist. Dazu heben wir die Regist-

Bild 5:  Einbinden einer Beispiel-DLL

Bild 6:  Registrieren der Beispiel-DLL

VBA-Programmierung
VBA: Bedingte Kompilierung nutzen

www.vbentwickler.de/496Seite 28

Bedingte Kompilierung
Die bedingte Kompilierung arbeitet mit If...Then-Be-
dingungen, die mit einem vorangestellten Raute-Zei-
chen angelegt werden:

#If VBA7 Then

'API-Deklarationen für VBA7

#Else

'API-Deklarationen für ältere VBA-Version

#End If

Hier haben wir bereits die erste von einigen wenigen
eingebauten Kompilierungskonstanten verwendet,
nämlich VBA7. Diese hat den Wert True, wenn VBA
in der Version 7 verwendet wird. Den Wert dieser
Konstanten können wir nur in einer mit dem Raute-
Zeichen beginnenden Zeile auslesen, sie kann nicht
einfach mit Debug.Print ermittelt werden. Die folgen-
de Anweisung liefert kein Ergebnis:

Debug.Print VBA7

Wir können aber eine Prozedur schreiben, in der wir
per #If...#Then-Bedingung prüfen, ob VBA7 den Wert
True oder False hat:

Public Sub IsVBA7()

#If VBA7 Then

 Debug.Print "VBA7"

#Else

 Debug.Print "Älteres VBA"

#End If

End Sub

Dies liefert für aktuelle Office-Versionen (ab Version
2010) den Wert VBA7.

32-Bit oder 64-Bit?
Auf die gleiche Weise können wir herausfinden, ob
die aktuelle Office-Version in der 32-Bit- oder in der
64-Bit-Version vorliegt.

Hier verwenden wir die Kompilierungskonstante Win64:

Public Sub Is32Or64Bit()

#If Win64 Then

 Debug.Print "64-Bit"

#Else

 Debug.Print "32-Bit"

#End If

End Sub

VBA: Bedingte Kompilierung nutzen
In VBA-Projekten kann es vorkommen, dass Anweisungen nur in bestimmten Situationen kompi-
liert werden sollen. Das bekannteste Beispiel sind die Deklarationen von API-Funktionen, die je
nach VBA-Version mal in der 32-Bit- und mal in der 64-Bit-Variante bereitgestellt werden sollen.
Da die 64-Bit-Version bei Verwendung von 32-Bit-Access unter Umständen Datentypen mit sich
bringt, die es in der 32-Bit-Version nicht gibt, würde dies beim Kompilieren zu Fehlern führen. Da-
her gibt es die sogenannte bedingte Kompilierung, bei der man mit speziellen If...Then-Bedingun-
gen dafür sorgen kann, dass nur die für die aktuelle Version relevanten Codezeilen kompiliert wer-
den können. In diesem Artikel zeigen wir, wie die bedingte Kompilierung funktioniert. Außerdem
stellen wir ein weiteres Beispiel vor, in dem wir entweder die Early Binding- oder die Late Binding-
Verwendung von Variablen nutzen wollen – abhängig von einer zur Laufzeit gesetzten Bedingung.

www.vbentwickler.de/496 Seite 29

VBA-Programmierung
VBA: Bedingte Kompilierung nutzen

Wir können auch explizit auf die 32-Bit-Version prüfen:

#If Win32 Then

 Debug.Print "32-Bit"

#Else

 Debug.Print "64-Bit"

#End If

Bedingte Kompilierung mit
benutzerdefinierten Konstanten
Wir können auch eigene Kompilierungskonstanten
definieren und diese per #If...#Then-Bedingung ab-
fragen.

Diese Konstanten müssen ohne Datentyp angegeben
werden und werden ebenfalls mit führenden Raute-
Zeichen definiert, zum Beispiel:

#Const cEarlyBinding = -1

Die Konstanten dürfen außerdem nur Long-Werte
enthalten.

Diese fragen wir dann wie folgt ab:

Public Sub EigeneKonstante()

#If cEarlyBinding = -1 Then

 Debug.Print "cEarlyBinding ist True"

#Else

 Debug.Print "cEarlyBinding ist False"

#End If

End Sub

Bedingte Kompilierung für Early Binding
und Late Binding
Wenn wir auf dem Entwicklungsrechner mit Early
Binding arbeiten wollen, um IntelliSense nutzen zu
können, aber auf dem Produktivrechner sicherstellen
wollen, dass das Projekt auch ohne Vorhandensein der
jeweiligen Bibliothek zumindest ohne Kompilierfehler
verwendet werden kann, können wir hier die Anwei-

sungen zum Deklarieren und Initialisieren von Ob-
jektvariablen einfügen:

Public Sub EarlyBinding()

#If cEarlyBinding = -1 Then

 Dim rst As adodb.Recordset

 Set rst = New adodb.Recordset

#Else

 Dim rst As Object

 Set rst = CreateObject("ADODB.Recordset")

#End If

End Sub

Wenn wir #cEarlyBinding auf -1 einstellen, werden
die Anweisungen im #If-Teil der Bedingung kompi-
liert und ausgeführt, andernfalls die aus dem #Else-
Teil. Das können wir leicht prüfen, indem wir die An-
weisungen schrittweise durchlaufen.

Wenn wir die Konstante #cEarlyBinding auf den Wert
-1 einstellen und die Bibliothek Microsoft ActiveX
Data Objects x.y nicht per Verweis eingebunden ist,
erhalten wir außerdem einen Kompilierfehler (siehe
Bild 1). Hier müssen wir also, solange wir auf dem

Bild 1:  Kompilierfehler, weil die ADODB-Bibliothek fehlt

VBA-Editor programmieren
Per VBA von Early Binding zu Late Binding wechseln

www.vbentwickler.de/495Seite 32

Die Lösung aus diesem Artikel soll es ermöglichen,
alle Module der aktuellen Datenbank aus einem Lis-
tenfeld auszuwählen und alle dort
in Deklarationszeilen vorhandenen
Klassen, Typen und Enumeratio-
nen einzulesen.

Wir benötigen zwar die Typen und
Enumerationen nicht, da wir diese
nicht nach Late Binding migrie-
ren können, aber aus technischen
Gründen können wir diese nicht
ohne erheblichen Aufwand aus der
Ermittlung ausschließen.

Das Formular zur Steuerung dieses
Vorgangs sehen wir in Bild 1. Hier
haben wir das Modul mdlTest aus-
gewählt und anschließend auf die
Schaltfläche Typen einlesen ge-
klickt, um alle dort enthaltenen Ty-
pen zu ermitteln und in einem wei-
teren Listenfeld anzuzeigen.

Wenn wir nun einen oder mehrere
dieser Einträge markieren und auf
die Schaltfläche Early Binding er-
setzen klicken, werden die als Early
Binding deklarierten Elemente samt
der zur Initialisierung verwendeten
Anweisungen in Late Binding um-

gewandelt – und zwar in allen Modulen, die im oberen
Listenfeld markiert sind.

Per VBA von Early Binding zu Late Binding wechseln
Im Artikel »VBA: Early Binding und Late Binding« (www.vbentwickler.de/494) haben wir die bei-
den Methoden Early Binding und Late Binding vorgestellt und ihre Vor- und Nachteile beschrieben.
Im vorliegenden Artikel zeigen wir nun eine automatische Lösung, um schnell einige oder alle per
Early Binding definierten Elemente nach Late Binding zu migrieren. Dazu nutzen wir Code, der
zunächst alle Early Binding-Elemente ermittelt, diese in einem Formular anzeigt und es dann er-
möglicht, diese in Late Binding-Elemente umzuwandeln.

Bild 1:  Formular zum Steuern der Migration nach Late Binding

www.vbentwickler.de/495 Seite 33

VBA-Editor programmieren
Per VBA von Early Binding zu Late Binding wechseln

Zusätzlich finden wir dort
noch ein Kontrollkäst-
chen namens Ersetzte
Zeilen als Kommentar
behalten. Damit können
wir festlegen, dass die
Early Binding-Anweisun-
gen nicht gelöscht, son-
dern lediglich auskom-
mentiert werden.

Im Beispielmodul mdl­
Test haben wir einige mit
Early Binding versehene
Anweisungen unterge-
bracht – und zwar in den
unterschiedlichsten Aus-
prägungen:

•	 als einfache Deklara-
tionszeilen,

•	 als Parameter von Pro-
zeduren,

•	 als Deklaration in Pro-
zeduren,

•	 als Rückgabewert von
Prozeduren und

•	 mit und ohne Zei-
lenumbrüche (siehe
Bild 2).

Nachdem wir die beiden
Typen ADODB.Connec­
tion und ADODB.Re­
cordset mit unserem Formular umgestellt haben, sieht
der abgebildete Ausschnitt des Moduls wie in Bild 3
aus.

Beschreibung des Formulars
Im Formular finden wir in der Entwurfsansicht die fol-
genden Steuerelemente (siehe Bild 4):

Bild 2:  Beispielanweisungen mit Early Binding

Bild 3:  Beispielanweisungen mit Late Binding und auskommentierter Early Binding-Version

VBA-Editor programmieren
Per VBA von Early Binding zu Late Binding wechseln

www.vbentwickler.de/495Seite 34

•	 txtSucheModule: Er-
laubt das schnelle Fil-
tern der im Listenfeld
lstModule angezeigten
Module.

•	 Schaltfläche cmdAlle­
Auswahlen: Markiert
alle Einträge im Listen-
feld lstModules.

•	 Listenfeld lstModules:
Zeigt die gefundenen
Module an, die den je-
weiligen Typ enthalten.

•	 Schaltfläche cmdTy­
penEinlesen: Liest alle
Typen der markierten
Module ein und zeigt
diese im Listenfeld
lstTypes an.

•	 Textfeld txtSucheTy­
pen: Filtert das Listen-
feld lstTypes nach dem
eingegebenen Suchbe-
griff.

•	 Schaltfläche cmdAl­
leTypenAuswaehlen:
Markiert alle Einträge
des Listenfeldes lstTy­
pes.

•	 Listenfeld lstTypes: Zeigt alle gefundenen Typen in
den markierten Modulen an.

•	 Schaltfläche cmdEarlyBindingErsetzen: Ersetzt für
alle markierten Typen in den markierten Modulen
Early Binding durch Late Binding.

•	 Kontrollkästchen chkErsetzeZeilenAlsKommen­
tarBehalten: Gibt an, ob die ersetzten Zeilen aus-
kommentiert oder einfach ersetzt werden sollen.

Ereignis beim Laden des Formulars
Beim Laden des Formulars wird das Ereignis aus Lis-
ting 1 ausgelöst. Es referenziert die aktuelle Datenbank

Bild 4:  Das Formular frmEarlyBindingToLateBinding in der Entwurfsansicht

www.vbentwickler.de/495 Seite 35

VBA-Editor programmieren
Per VBA von Early Binding zu Late Binding wechseln

mit der CodeDb-Funktion (dies ist eine Vorbereitung,
um die Lösung als Add-In zu nutzen). Dann löscht
es die beiden Tabellen tblModules und tblTypes, in
denen wir die ermittelten Daten speichern, um sie in
den Listenfeldern anzuzeigen. tblModules enthält das
Primärschlüsselfeld ModulID und das Textfeld Mo­
dul. Die Tabelle tblTypes enthält die beiden Felder
TypeID und Type sowie Line und LineNumber, um
jeweils eine Zeile zu speichern, in der dieser Typ auf-
tritt (diese wurden eher zu Testzwecken während der
Programmierung der Lösung genutzt).

Danach holen wir mit der Funktion CurrentVBPro­
ject einen Verweis auf das VBA-Projekt der aktuellen

Datenbank. Dies ist notwendig, da beim Vorhanden-
sein von Access-Add-Ins oder eingebundenen Biblio-
theksdatenbanken sonst gegebenenfalls das falsche
VBA-Projekt verwendet wird. Die Funktion Cur­
rentVBProject sieht wie folgt aus:

Public Function CurrentVBProject() As VBIDE.VBProject

 Dim objVBProject As VBIDE.VBProject

 For Each objVBProject In VBE.VBProjects

 If objVBProject.FileName = CurrentDb.Name Then

 Set CurrentVBProject = objVBProject

 Exit Function

 End If

 Next objVBProject

Private Sub Form_Load()
 Dim db As DAO.Database
 Dim objVBProject As VBIDE.VBProject
 Dim objVBComponent As VBIDE.VBComponent

 Set db = CodeDb
 db.Execute "DELETE * FROM tblModules", dbFailOnError
 db.Execute "DELETE * FROM tblTypes", dbFailOnError

 Set objVBProject = CurrentVBProject
 For Each objVBComponent In objVBProject.VBComponents
 db.Execute "INSERT INTO tblModules(Modul) VALUES('" & objVBComponent.name & "')", dbFailOnError
 Next objVBComponent

 Me.lstModules.Requery
 Me.lstTypes.Requery

 If Not IsNull(Me.OpenArgs) Then
 Dim i As Integer
 Dim strVBComponent As String
 strVBComponent = Me.OpenArgs
 For i = 0 To Me.lstModules.ListCount - 1
 If Me.lstModules.Column(1, i) = strVBComponent Then
 Me.lstModules.Selected(i) = True
 Call cmdTypenEinlesen_Click
 End If
 Next i
 End If
End Sub

Listing 1:  Ereignisprozedur, die beim Laden des Formulars ausgelöst wird

VBA-Editor programmieren
Per VBA von Early Binding zu Late Binding wechseln

www.vbentwickler.de/495Seite 36

End Function

Sie durchläuft alle vorhandenen VB-Projekte und
prüft, ob der Pfad dem Pfad der aktuell geöffneten Ac-
cess-Datenbank entspricht. Ist das der Fall, wird der
Verweis auf dieses VB-Projekt zurückgegeben.

Für die Verwendung dieser und anderer nachfolgend
genutzter Elemente, die auf den VBA-Editor und seine
Module zugreifen, fügen wir dem VBA-Projekt einen
Verweis auf die Bibliothek Microsoft Visual Basic for
Applications Extensibility 5.3 Object Library hinzu.

Die Prozedur Form_Load durchläuft nun alle Elemen-
te der Auflistung VBComponents, was den Modulen
entspricht. Für jedes Modul wird ein Eintrag in der
Tabelle tblModules angelegt. Danach werden die bei-
den Listenfelder lstModules und lstTypes aktualisiert,
damit sie den aktuellen Inhalt der beiden Tabellen
tblModules und tblTypes anzeigen.

Schließlich haben wir noch den Fall vorbereitet, dass
das Formular direkt für ein bestimmtes Modul aufge-
rufen wird. Dann würden wir das Argument OpenArgs
mit dem Namen des gewünschten Moduls füllen. Dies
wird dann direkt im Listenfeld lstModules markiert.

Der Aufruf des Formulars für diesen Fall sieht wie folgt
aus:

DoCmd.OpenForm "frmEarlyBindingToLateBinding", _

 OpenArgs:="mdlTest"

Auswählen aller Module
Um alle Module auszuwählen, klicken wir auf die
Schaltfläche cmdAlleTypenAuswaehlen. Diese durch-
läuft alle Elemente des Listenfeldes und stellt die Eigen-
schaft Selected für den jeweiligen Index auf True ein:

Private Sub cmdAlleTypenAuswaehlen_Click()

 Dim lngItem As Long

 For lngItem = 0 To Me.lstTypes.ListCount - 1

 Me.lstTypes.Selected(lngItem) = True

 Next lngItem

End Sub

Einlesen der Typen der markierten
Module
Ein Klick auf die Schaltfläche cmdTypenEinlesen soll
alle Typen der markierten Module ermitteln und in die
Tabelle tblTypes schreiben.

Dazu referenziert sie wieder die Datenbank mit dem
Formular und leert die Tabelle tblTypes. Dann prüft
sie, ob überhaupt Einträge im Listenfeld lstModules
markiert sind, und weist darauf hin, falls das nicht der
Fall ist.

Danach durchläuft sie alle markierten Einträge des
Listenfeldes lstModules über die ItemsSelected-Auf-
listung und ermittelt mit Column(1, var) den Namen
des jeweiligen Moduls. Innerhalb der Schleife ruft sie
für jedes dieser Elemente die Prozedur TypesToTa­
ble auf und übergibt dieser den Namen des Moduls.
Schließlich aktualisiert sie die Liste der Typen.

Private Sub cmdTypenEinlesen_Click()

 Dim var As Variant

 Dim strModule As String

 Dim db As DAO.Database

 Set db = CodeDb

 DoCmd.Hourglass True

 db.Execute "DELETE * FROM tblTypes", dbFailOnError

 If Me.lstModules.ItemsSelected.Count = 0 Then

 MsgBox "Markiere die zu untersuchenden Module.", _

 vbOKOnly + vbExclamation, "Kein Modul markiert"

 Exit Sub

 End If

 For Each var In Me.lstModules.ItemsSelected

www.vbentwickler.de/495 Seite 37

VBA-Editor programmieren
Per VBA von Early Binding zu Late Binding wechseln

 strModule = Me.lstModules.Column(1, var)

 Call TypesToTable(strModule)

 Next var

 Me.lstTypes.Requery

 DoCmd.Hourglass False

End Sub

Auslesen der Typen eines Moduls
Die Prozedur TypesToTable referenziert wieder die
Code-Datenbank und das aktuelle VBA-Projekt (siehe
Listing 2).

Danach füllt sie die Variable objVBComponent mit
einem Verweis auf das übergebene Modul und holt
einen weiteren Verweis auf das enthaltene CodeMo­
dule-Objekt, das in objCodeModule landet.

Dann durchläuft sie in einer For...Next-Schleife alle
Codezeilen, wobei die letzte Zeile mit der Eigenschaft
CountOfLines ermittelt wird.

Hier speichert sie die Originalzeile in strLineOriginal
und in strLine die um führende und folgende Leerzei-
chen bereinigte Version der Zeile.

Für diese ruft sie nun die Funktion KommentarAb­
schneiden auf, die wir ebenfalls im Modul finden und
die alle am Ende der Zeile befindlichen Kommentare
aus strLine entfernt.

Eine weitere Funktion namens TextAusLiteralenEnt­
fernen leert eventuell in Anführungszeichen vorhan-
dene Texte. Aus der Zeile strText = "Beispieltext" wird
dann zum Beispiel strText = "".

Public Sub TypesToTable(strModule As String)
 Dim db As DAO.Database
 Dim objVBProject As VBIDE.VBProject
 Dim objVBComponent As VBIDE.VBComponent
 Dim objCodeModule As VBIDE.CodeModule
 Dim strLine As String
 Dim strProc As String
 Dim lngProcType As Long
 Dim lngProcBodyLine As Long
 Dim strLineOriginal As String
 Dim lngLine As Long
 Dim lngProcline As Long

 Set db = CodeDb

 Set objVBProject = CurrentVBProject
 Set objVBComponent = objVBProject.VBComponents(strModule)
 Set objCodeModule = objVBComponent.CodeModule
 For lngLine = 1 To objCodeModule.CountOfLines
 strLineOriginal = objCodeModule.Lines(lngLine, 1)
 strLine = Trim(strLineOriginal)
 strLine = KommentarAbschneiden(strLine)
 strLine = TextAusLiteralenEntfernen(strLine)
 ...

Listing 2:  Einlesen der Typen (Teil 1)

SQL Server und Co.
SQL Server-Datenbanken vergleichen mit VS.Code

www.vbentwickler.de/472Seite 48

Visual Studio Code herunterladen und
installieren
Als Erstes benötigen wir Visual Studio Code auf unse-
rem Rechner. Dieses laden wir von der folgenden Web-
seite herunter:

https://code.visualstudio.com/

Nach dem Download können wir Visual Studio Code
direkt installieren. Hier gibt es kaum Optionen – wir
können lediglich noch die Einträge zum Öffnen von

SQL Server-Datenbanken vergleichen mit VS.Code
Es gibt verschiedene Gründe, zwei Datenbanken miteinander zu vergleichen. Wenn uns zwei Ver-
sionen einer Datenbank vorliegen, unterscheiden diese sich gegebenenfalls und wir möchten her-
ausfinden, welche die aktuellere ist. Bei der Gelegenheit kann man auch gleich noch prüfen, wel-
che Unterschiede zwischen den Datenbanken es überhaupt gibt. Damit eröffnen sich praktische
Möglichkeiten: So können wir etwa ein Skript erstellen lassen, welches die Unterschiede zwischen
zwei Versionen einer Datenbank aufzeigt. Damit erkennen wir nicht nur die Unterschiede selbst,
sondern können das Skript sogar nutzen, um die ältere der beiden Datenbanken auf den aktuellen
Stand bringen. Das ist hilfreich, wenn wir eine beim Kunden befindliche Datenbank aktualisieren
wollen. Wir erstellen dann einfach ein Skript mit den Unterschieden und führen es beim Kunden
aus, damit er die aktuellste Version der Datenbank erhält. Für das Ermitteln der Unterschiede gibt
es verschiedene Werkzeuge, etwa die SQL Server-Tools für Visual Studio Code, die leichtgewichtige
Entwicklungsumgebung von Microsoft. In diesem Artikel zeigen wir, wie dieses installiert wird und
wie wir die SQL Server-Tools aktivieren und nutzen, um die Unterschiede zwischen zwei Datenban-
ken in einem Skript zusammenzustellen.

Bild 1:  Visual Studio Code direkt nach dem Start

www.vbentwickler.de/472 Seite 49

SQL Server und Co.
SQL Server-Datenbanken vergleichen mit VS.Code

Dateien mit Visual Stu­
dio Code für die verschie-
denen Kontextmenüs von
Windows aktivieren.

Nach der Installation und
dem Start präsentiert sich
Visual Studio Code wie
in Bild 1.

MSSQL Extension
installieren
Als Nächstes benötigen
wir die Erweiterung für
die Arbeit mit SQL Ser-
ver-Datenbanken. Dazu
aktivieren wir mit Strg +
Umschalt + X die Anzeige der Extensions. Hier geben
wir SQL als Suchbegriff ein und erhalten unter ande-
rem den Eintrag SQL Server (mssql) – siehe Bild 2.

Ein Klick auf die Schaltfläche Install fügt diese Exten-
sion zu Visual Studio Code hinzu.

Verbindung zu den zu vergleichenden
Datenbanken herstellen
Nun benötigen wir zwei Verbindungen, jeweils eine
für die beiden zu vergleichenden Datenbanken. Dazu

betätigen wir die Tastenkombination Strg + Um­
schalt + P und wählen den Eintrag MS SQL: Add Con­
nection aus (siehe Bild 3).

Es erscheint ein Dialog, in dem wir die Verbindungs-
daten eingeben – den Namen des Servers, die Angabe,
ob wir dem Server-Zertifikat vertrauen wollen, die Au-
thentifizierungsmethode und bei SQL Server-Authen-
tifizierung die Benutzerdaten sowie den Namen der
Datenbank. Diesen lassen wir allerdings weg, denn wir
wollen nicht nur eine Verbindung zu einer einzelnen

Bild 2:  Installieren der SQL Server-Erweiterung

Bild 3:  Hinzufügen einer Verbindung

www.vbentwickler.de/491 Seite 53

SQL Server und Co.
SQL Server-Datenbank von Access aus updaten

Access-Entwickler wissen: Eine Access-Datenbank
ist niemals fertig. Kunden haben immer neue Anfor-
derungen, die umgesetzt werden müssen. Wenn die
Anforderungen auch die Tabellen der Datenbank be-
treffen, müssen wir bei einer Aktualisierung des Fron-
tends auch das Backend entsprechend erneuern, zum
Beispiel indem wir Tabellen hinzufügen oder vorhan-
dene Tabellen um Felder erweitern.

Bei einer Kombination aus Access-Frontend und -Ba-
ckend ist es damit bereits getan. Wenn die Backend-
Datenbank jedoch eine SQL Server-Datenbank ist,
können noch weitere Änderungen hinzukommen:
Neue gespeicherte Views, gespeicherte Prozeduren,
Trigger oder Funktionen.

In den folgenden Abschnitten stellen wir die Voraus-
setzungen vor und zeigen auch, wie die Aktualisierung
beim Start der neuen Version des Frontends automatisch
durchgeführt werden kann, sodass die Anwendung di-
rekt danach wieder in Betrieb genommen werden kann.

Aktualisierung per SQL
Die Aktualisierung der Elemente einer Backend-Da-
tenbank geschieht beispielsweise beim Hinzufügen

oder Ändern des Tabellenentwurfs durch entsprechen-
de SQL-Skripte wie CREATE TABLE, ALTER TAB­
LE oder, wenn Tabellen gelöscht werden sollen, auch
durch DROP TABLE. Indizes und andere Elemente
erstellen wir ebenfalls mit SQL-Anweisungen.

Bei einer reinen Access-Lösung mit einem Access-
Backend kommt hier der zusätzliche Aufwand auf uns
zu, diese Aufrufe manuell zusammenstellen zu müs-
sen.

Es gibt keinen eingebauten Mechanismus, mit dem wir
beispielsweise die Unterschiede zwischen zwei Access-
Tabellen erfassen und in ein SQL-Skript gießen kön-
nen.

Beim SQL Server haben wir es zumindest beim Erstel-
len vollständig neuer Elemente etwas leichter, denn die
entsprechenden Skripte können wir uns im SQL Ser-
ver Management Studio generieren lassen.

Schwieriger wird es, wenn wir nur ein Feld oder einen
Index zu einer Tabelle hinzufügen wollen – hier müs-
sen wir grundsätzlich erst einmal selbst das benötigte
Skript schreiben.

SQL Server-Datenbank von Access aus updaten
Wenn wir eine Access-Anwendung mit SQL Server-Frontend an einen Kunden ausgeliefert haben,
müssen wir sicherstellen, dass Updates problemlos funktionieren. Updates haben hier zwei Seiten:
Einerseits kann das Access-Frontend um neue Funktionen erweitert werden, andererseits können
diese Funktionen eine Anpassung der SQL Server-Datenbank erfordern. Das Aktualisieren der Ac-
cess-Datenbank erfolgt im einfachsten Fall durch einfaches Ersetzen der .accdb-Datei. Beim Ba-
ckend wird es ein wenig aufwendiger: Wir können es nicht einfach ersetzen, da die enthaltenen
Daten im laufenden Betrieb bearbeitet wurden. Hier gibt es nun zwei Wege: Wir lassen uns ein
Backup des Backends zukommen, aktualisieren es und spielen es anschließend wieder ein. Wenn
die Anwendung bei mehreren Kunden verwendet wird, ist dies jedoch zu aufwendig. In diesem Fall
können wir das Backend aber auch automatisch durch entsprechenden Code in der neuen Version
des Frontends aktualisieren lassen. Wie das gelingt, zeigen wir in diesem Artikel.

SQL Server und Co.
SQL Server-Datenbank von Access aus updaten

www.vbentwickler.de/491Seite 54

Allerdings gibt es auch Tools, mit de-
nen man die Unterschiede zwischen
zwei Datenbankversionen ermitteln
kann.

Eines davon stellen wir im Artikel SQL
Server-Datenbanken vergleichen mit
VS.Code (www.vbentwickler.de/472)
vorgestellt – hier können wir zumin-
dest die Unterschiede zwischen zwei Versionen ermit-
teln und daraus die notwendigen Anweisungen ablei-
ten, zum Beispiel zum Ergänzen eines Feldes in einer
Tabelle.

Voraussetzungen für den Abgleich
Wenn wir eine neue Version des Frontends an die
Kunden verteilen und damit auch das Backend im
SQL Server aktualisieren wollen, benötigen wir einige
grundlegende Elemente.

Das erste ist eine Tabelle im Backend, in der wir die
aktuelle Version des Backends festhalten. Diese enthält
lediglich das Feld Version mit
dem Datentyp integer, in dem
wir die aktuelle Versionsnum-
mer speichern (siehe Bild 1).

Außerdem benötigen wir noch
zwei Tabellen im Access-Fron-
tend, in denen wir die Informa-
tionen zum Aktualisieren des
Backends speichern.

Die erste heißt tblVersionen
und sieht im Entwurf wie in
Bild 2 aus.

Hier speichern wir grundlegen-
de Informationen zur jeweiligen
Version, zum Beispiel die Versi-
onsnummer, das Datum, an dem

die Version erstellt wurde, Bemerkungen, das Ausfüh-
rungsdatum des Updates und den Status des Updates.

Die zweite Tabelle heißt tblVersionsdetails (siehe
Bild 3). Sie speichert die einzelnen Schritte, die zum
Aktualisieren auf die jeweilige Version notwendig sind.

Hier finden wir zunächst ein Fremdschlüsselfeld na-
mens VersionID, mit der die Zuordnung zu der Ver-
sion aus der Tabelle tblVersionen hergestellt wird. Das
Feld SQL enthält die auszuführende Anweisung, zum
Beispiel zum Anlegen oder Löschen einer Tabelle, zum
Hinzufügen von Feldern oder Indizes oder auch zum

Bild 1:  Versionstabelle im SQL Server

Bild 2:  Versionstabelle im Access-Frontend

www.vbentwickler.de/491 Seite 55

SQL Server und Co.
SQL Server-Datenbank von Access aus updaten

Anlegen von Views, ge-
speicherten Prozeduren
oder Funktionen. Im Feld
ReihenfolgeID legen wir
fest, in welcher Reihen-
folge diese Schritte ausge-
führt werden sollen.

Die übrigen Felder dienen
der Aufzeichnung der Er-
gebnisse der Aktualisie-
rung.

Sie nehmen den Zeit-
punkt der Aktualisierung,
den Status und eine even-
tuelle Fehlermeldung auf,
damit diese beim Fehl-
schlagen einer Aktualisie-
rung ausgewertet werden
können.

Für die beiden Felder VersionID und ReihenfolgeID
haben wir einen zusammengesetzten, eindeutigen In-
dex erstellt, damit jede ReihenfolgeID nur einmal je
Version vorkommen kann.

Benutzeroberfläche zum Verwalten der
Versionsupdates
Die Daten dieser Tabellen wollen wir in einem Formu-
lar samt Unterformular verwalten.

Der Entwurf des Hauptformulars samt Unterformular
sieht wie in Bild 4 aus.

Das Hauptformular ist an die Tabelle tblVersionen ge-
bunden und zeigt alle Felder dieser Tabelle an. Das Un-
terformular verwendet eine Abfrage basierend auf der
Tabelle tblVersionsdetails als Datensatzquelle, welche
die enthaltenen Daten nach dem Feld ReihenfolgeID
filtert:

SELECT VersionsdetailID, VersionID, Beschreibung, SQL,

ReihenfolgeID, AusgefuehrtAm, Erfolgreich, Fehlermel-

dung FROM tblVersionsdetails ORDER BY tblVersionsdetails.

ReihenfolgeID;

Damit das Unterformular nur die Datensätze anzeigt,
die zu dem im Hauptformular angezeigten Datensatz
gehören, sind die Eigenschaften Verknüpfen von und
Verknüpfen nach des Unterformular-Steuerelements
jeweils mit dem Wert VersionID gefüllt.

Das Unterformular (siehe Bild 5) ist als Endlosformu-
lar ausgelegt.

Es enthält neben den gebundenen Feldern noch zwei
Schaltflächen, die das Ändern der Reihenfolge durch
Verschieben nach oben oder nach unten ermöglichen.

Im Hauptformular haben wir für das Unterformular-
Steuerelement das Ereignis Beim Hingehen definiert.

Bild 3:  Tabelle der Versionsdetails

SQL Server und Co.
SQL Server-Datenbank von Access aus updaten

www.vbentwickler.de/491Seite 56

Hier prüfen wir, ob das Hauptformular einen vorhan-
denen oder einen neuen, leeren Datensatz anzeigt.

Falls es sich um einen neuen, leeren Datensatz handelt,
soll eine Meldung angezeigt werden, damit zunächst
ein Datensatz im Hauptformular angelegt wird:

Private Sub sfmVersionen_Enter()

 If Me.NewRecord Then

 MsgBox "Bitte lege zuerst eine Version an.", _

 vbOkOnly + vbExclamation, "Neue Version fehlt"

 Me.Version.SetFocus

 End If

End Sub

Ereignisse im Unterformular
Für das Ereignis Beim Anzeigen des Unterformulars
haben wir die folgende Ereignisprozedur hinterlegt:

Private Sub Form_Current()

 Me.TimerInterval = 100

End Sub

Diese startet den Timer für 100 Millisekunden, dann
wird die folgende Ereignisprozedur ausgelöst:

Private Sub Form_Timer()

 Me.TimerInterval = 0

 If Me.NewRecord Then

Bild 4:  Haupt- und Unterformular zum Verwalten der Versionen und Versionsdetails

Bild 5:  Unterformular zum Verwalten der Versionsdetails

www.vbentwickler.de/491 Seite 57

SQL Server und Co.
SQL Server-Datenbank von Access aus updaten

 Me.ReihenfolgeID.DefaultValue = _

 Nz(DMax("ReihenfolgeID", "tblVersionsdetails", _

 "VersionID = " & Me.Parent.VersionID), 1)

 End If

End Sub

Diese setzt TimerInterval wieder auf 0 und prüft, ob
der Benutzer gerade einen neuen, leeren Datensatz ak-
tiviert hat.

In diesem Fall wird der Standardwert für das Feld Rei­
henfolgeID dieses Datensatzes auf den bisher höchs-

ten vergebenen Reihenfolge-Wert der Datensätze aus
tblVersionsdetails für die Version aus dem Hauptfor-
mular ermittelt und um eins erhöht.

Dies müssen wir verzögert machen, weil das Unterfor-
mular vor dem Hauptformular geladen wird und im
Hauptformular noch kein Datensatz ist, für den wir
die aktuell höchste vergebene ReihenfolgeID ermit-
teln können.

Nach 100 Millisekunden ist dies jedoch in der Regel
der Fall.

Private Sub cmdNachOben_Click()
 Dim db As dao.Database
 Dim lngVersionID As Long
 Dim lngReihenfolgeZielID As Long
 Dim lngReihenfolgeAktuellID As Long
 Dim lngAktuellID As Long
 Dim lngZielID As Long

 Set db = CurrentDb

 lngVersionID = Me.Parent!VersionID

 Call ReihenfolgeErneuern(db, lngVersionID)

 lngReihenfolgeAktuellID = Me.ReihenfolgeID
 lngReihenfolgeZielID = Nz(DMax("ReihenfolgeID", "tblVersionsdetails", "VersionID = " & lngVersionID _
 & " AND ReihenfolgeID < " & Me!ReihenfolgeID), 0)
 If Not lngReihenfolgeZielID = 0 Then
 lngZielID = DLookup("VersionsdetailID", "tblVersionsdetails", "VersionID = " & lngVersionID _
 & " AND ReihenfolgeID = " & lngReihenfolgeZielID)
 lngAktuellID = Me!VersionsdetailID

 Call ReihenfolgeVertauschen(db, lngVersionID, lngAktuellID, lngZielID, lngReihenfolgeAktuellID, _
 lngReihenfolgeZielID)

 Me.Requery
 Else
 MsgBox "Kann nicht nach oben verschoben werden.", vbOKOnly + vbExclamation, "Kein Verschieben möglich"
 End If
End Sub

Listing 1:  Verschieben des aktuellen Versionsdetails nach oben

